

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT FOR WEST ASH POND COMPLEX

CTI DEVELOPMENT LLC
WOOD RIVER SITE/ FORMER WOOD RIVER POWER PLANT
1 CHESSEN LANE
ALTON, ILLINOIS 62202

Prepared For:

Mr. Charles Klumb
Project Manager
CTI Development, LLC
2275 Cassens Drive, Suite 118
Fenton, MO 63026

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	MONITORING & CORRECTIVE ACTION PROGRAM STATUS	2
3.0	ACTIONS COMPLETED IN 2021	4
4.0	PROBLEMS ENCOUNTERED & CORRECTIVE ACTIONS	4
5.0	2022 PLANNED ACTIONS	4
6.0	REFERENCES	5

REPORT TABLES

TABLE A - STATISTICAL BACKGROUND LEVEL

TABLE B - GROUNDWATER PROTECTION STANDARDS

APPENDICES

APPENDIX A FIGURES

FIGURE 1 - GROUNDWATER WELL LOCATION MAPS

FIGURE 2 – Q1 POTENTIOMETRIC SURFACE MAP

FIGURE 3 – O2 POTENTIOMETRIC SURFACE MAP

FIGURE 4 – Q3 POTENTIOMETRIC SURFACE MAP

FIGURE 5 – Q4 POTENTIOMETRIC SURFACE MAP

APPENDIX B TABLES

TABLE 1 - APPENDIX III ANALYTICAL SUMMARY

TABLE 2 - APPENDIX IV ANALYTICAL SUMMARY

1.0 INTRODUCTION

In accordance with Illinois JCAR Administrative Code requirements under Illinois Title 35, Subtitle G, Chapter I, Subchapter J - Part 845.610(e), Gemini Engineering LLC (Gemini) has prepared this report on behalf of CTI Development LLC (CTI) for the 2021 Wood River West Ash Pond Complex in Alton, Illinois. CTI took possession of the power station property on August 30, 2019 from Luminant/Dynegy Midwest Generation, LLC (DMG).

The owner or operator of an existing Coal Combustion Residuals (CCR) unit shall prepare an annual groundwater monitoring and corrective action report, for the preceding calendar year, that documents the status of the groundwater monitoring and corrective action program for the CCR unit. The report should summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and key activities for the upcoming year per Part 845.610(e). The annual report will minimally cover the following site-specific information:

- 1. A drawing or diagram showing the CCR unit, the designated background (or upgradient) monitoring wells, and the designated downgradient monitoring wells.
- 2. Identification and discussion of any monitoring wells that were installed or decommissioned during the preceding year.
- 3. A Potentiometric surface map for groundwater elevations at the time of each sampling event.
- 4. Provide a summary of groundwater samples taken for the West Ash Pond Complex, including the number of groundwater samples collected for analysis at each of the designated background and downgradient wells, the dates collected, whether the sample was required by the detection monitoring or assessment monitoring programs, and the groundwater monitoring data.
- 5. A discussion of the groundwater monitoring program including:
 - a. Statistical analysis of groundwater data to identify constituents detected at a statistically significant increase over background levels.
 - b. The transition from detection groundwater monitoring to assessment monitoring of constituents identified in the statistical assessment.
- 6. Other information required to be included in the annual report as specified in Part 845.610(e).

2.0 MONITORING & CORRECTIVE ACTION PROGRAM STATUS

As referenced in the 2018 Annual Groundwater Monitoring and Corrective Action Report (NRT/OGB 2019), the West Ash Pond Complex has been in an Assessment Monitoring Program in accordance with 40 CFR 257.94(e)(2). DMG placed the required notification on April 9, 2019.

Assessment monitoring sampling was continued in 2021 during the quarterly sampling events under the direction of CTI and Gemini. Samples were collected from each of the West Ash Pond Complex designated upgradient and downgradient wells and analyzed for the Appendix III and Appendix IV parameters. The analytical data was evaluated in accordance with the Statistical Analysis Plan (NRT/OBG 2017) provisions to determine if any statistically significant increases (SSIs) of the Appendix III parameters were above the background concentrations and if statistically significant levels (SSLs) of Appendix IV parameters were above the Groundwater Protections Standards (GWPSs).

In 2019, the West Ash Pond Complex entered into the quarterly sampling schedule as outlined with the Groundwater Monitoring Plan (NRT/OBG Oct. 2016) and Closure Plan (AECOM Nov. 2016). Quarterly sampling events were completed by Teklab Inc. on the following dates during 2021:

Q1	Q2	Q3	Q4
Sample Date	Sample Date	Sample Date	Sample Date
2/23/2021	5/29/2021	8/26/2021	11/30/2021

Assessment Monitoring Program Summary November 2017 – November 2021

Well	Appendix III	Append	lix IV - SSLs	
ID	Trend	UCL Value	Trend	UCL Value
02	All Trends Decreasing or	Boron Above	None	N/A
	Statistically Insignificant	Background		
04	All Trends Decreasing or	No Parameters Above	None	N/A
	Statistically Insignificant	Background or		
32R	Increasing for Sulfate Only,	Boron Above	None	N/A
	Remaining are Statistically	Background		
	Insignificant			

34	All Trends Decreasing or	Boron Above	None	N/A
	Statistically Insignificant	Background &		
		Fluoride at		
		Background		

The Statistical Background Values for the SSIs evaluation from Appendix III are summarized in Table A. The GWPSs for the SSLs evaluation from Appendix IV are summarized in Table B.

Table A - Statistical Background Values

Parameter	Statistical Background Value				
Арре	endix III				
Boron (mg/L)	1.17				
Calcium (mg/L	667.381				
Chloride (mg/L)	3,316				
Fluoride (mg/L)	0.4				
pH (S.U.)	6.4 / 7.4				
Sulfate (mg/L)	279				
TDS (mg/L)	7629				

Notes:

mg/L = milligrams per liter

S.U. = Standard Units

TDS = Total Dissolved Solids

Table B - Groundwater Protection Standards

Parameter	Groundwater Protection Standard
Ap	pendix IV
Antimony (mg/L)	0.006
Arsenic (mg/L)	0.010
Barium (mg/L)	2
Beryllium (mg/L)	0.004
Cadmium (mg/L)	0.005
Chromium (mg/L)	0.10
Cobalt (mg/L)	0.006
Fluoride (mg/L)	4
Lead (mg/L)	0.015
Lithium (mg/L)	0.171
Mercury (mg/L)	0.002
Molybdenum (mg/L)	0.10
Selenium (mg/L)	0.05
Thallium (mg/L)	0.002

Radium 226+228 (pCi/L)	5
Notes:	
mg/L = milligrams per liter	
pCi/L = picoCuries per liter	

3.0 ACTIONS COMPLETED IN 2021

As previously noted, a quarterly groundwater sampling event was completed for the West Ash Pond Complex in 2021 under the Assessment Monitoring Program. A summary of the analytical data and statistical analyses are found in Appendix B - Tables 1 and 2.

Appendix A - Figure 1 displays the designated groundwater well system for the West Ash Pond Complex.

4.0 PROBLEMS ENCOUNTERED & CORRECTIVE ACTIONS

Performance and assessment of the designated groundwater well system for the West Ash Pond Complex encountered no issues during 2021. Guidelines in the Sampling and Analysis Plan (NRT/OGB, 2017) were followed during the collection and analysis of the representative samples.

5.0 2022 PLANNED ACTIONS

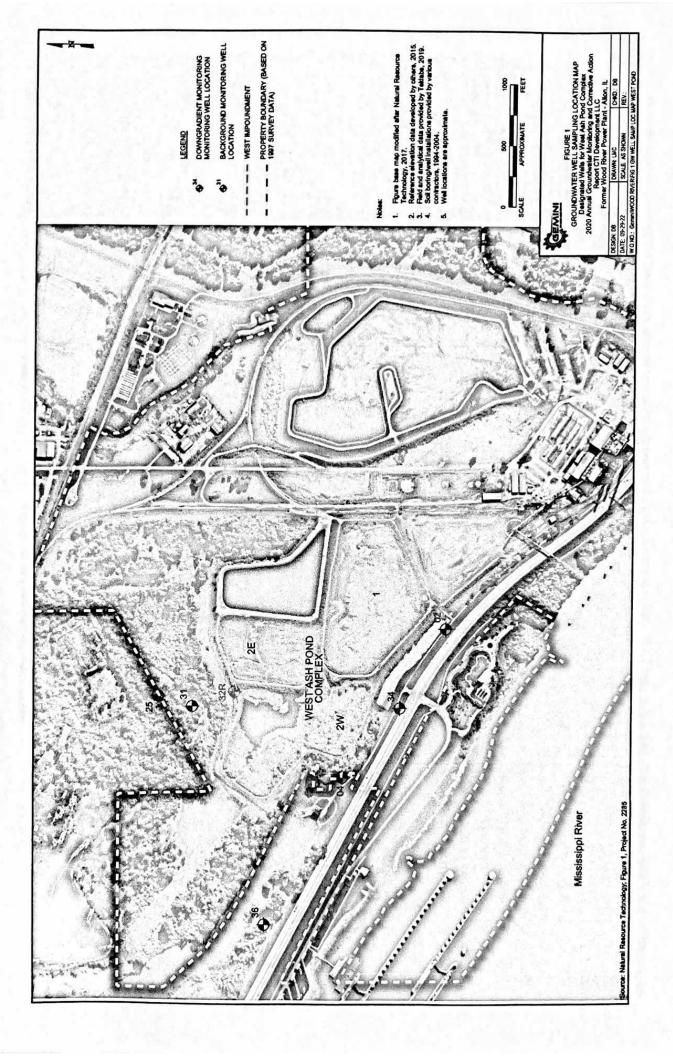
The following actions are planned for 2022:

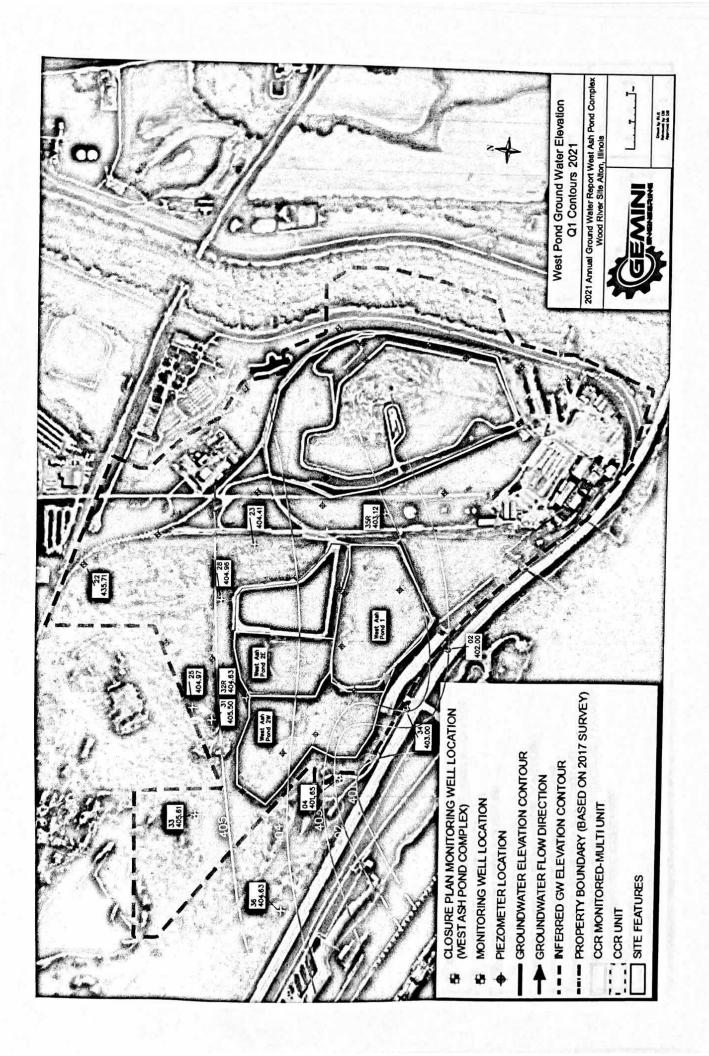
- The continuation of Assessment Monitoring Program of the West Ash Pond Complex with quarterly sampling events.
- The continuation of statistical evaluation of the collected analytical data from the designated groundwater well system to determine if any SSLs for Appendix IV parameters has occurred.
- If an SSL has been identified, an assessment of "potential alternative sources" will be completed. A "potential alternative source" is one other than the referenced CCR unit that could have caused the SSL or the SSL resulted from an error in one of the following processes: sample collection, sample analysis, statistical evaluation, or a possible variation/change in the groundwater systems quality.

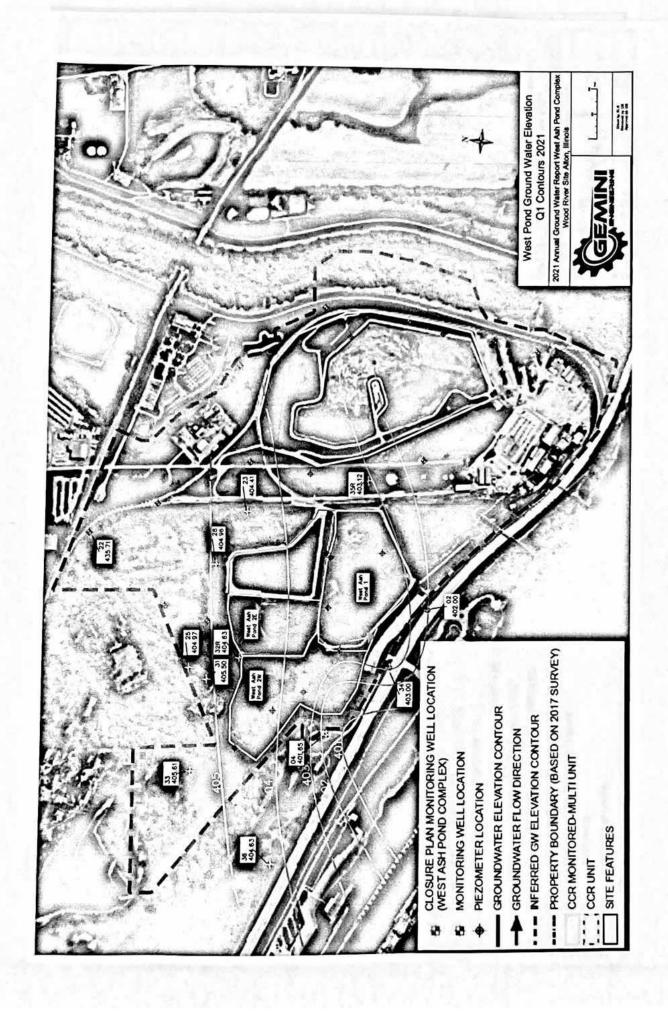
- If an alternative source is causing the SSL, a documented demonstration will be completed within 90 days after the SSL discovery and included in the Groundwater Monitoring and Corrective Action report for that year.
- If an alternative source is <u>not</u> the cause of the SSL, the procedure and requirements in 40 CFR 257.94 257.98 as applicable will be met. This also includes completion of the appropriate notifications required by 40 CFR 257.105 257.108.

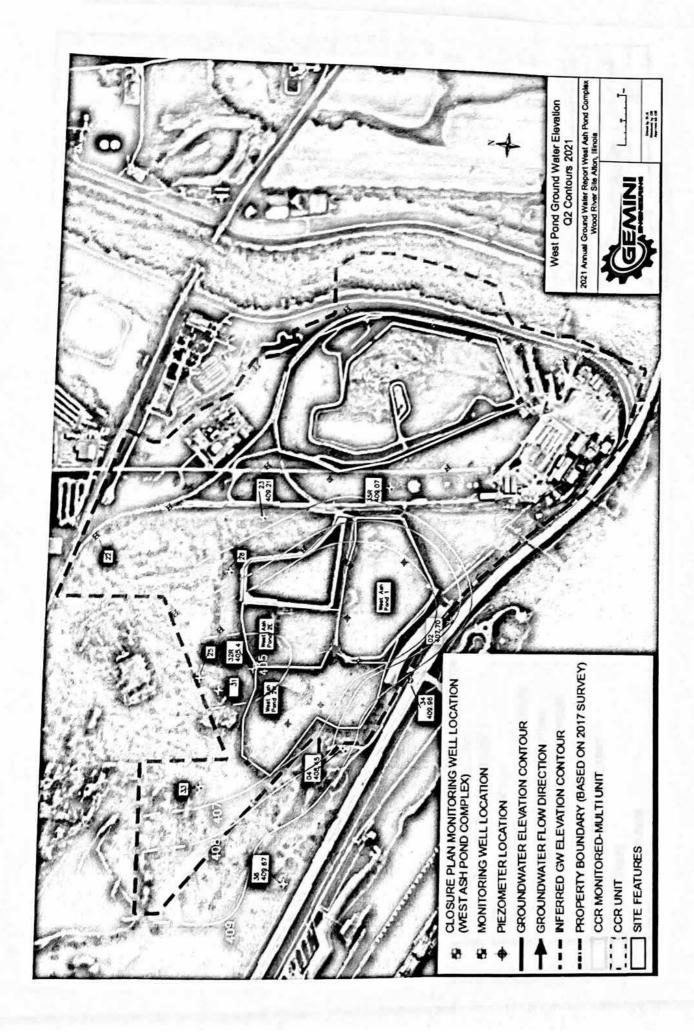
6.0 REFERENCES

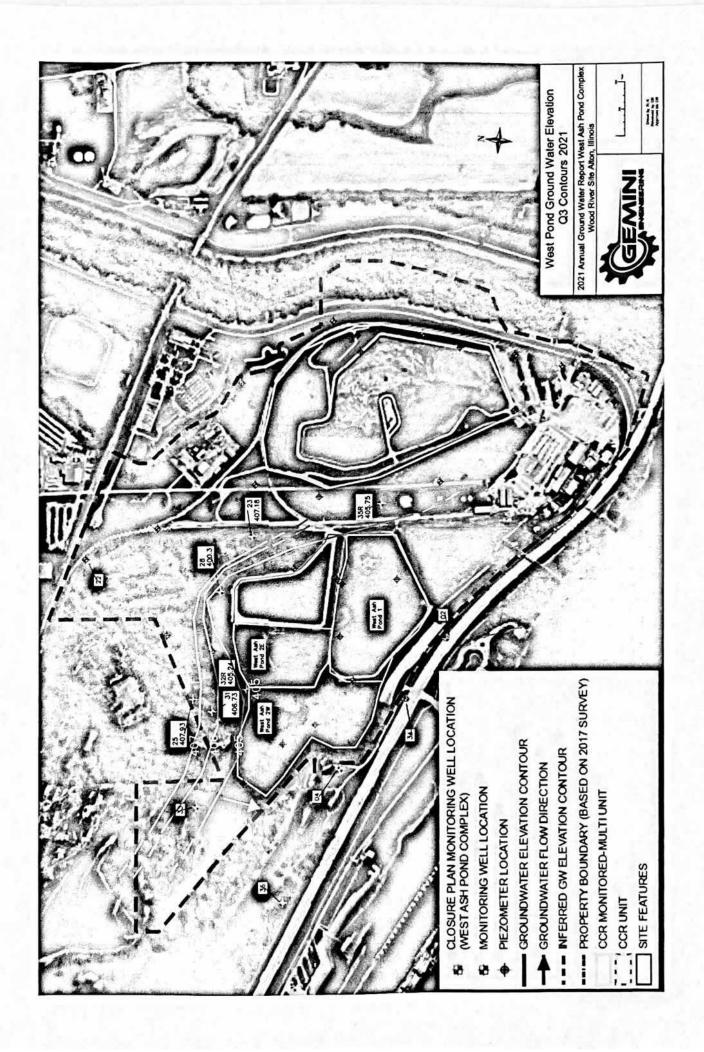
AECOM, November 28, 2016. Closure and Post-Closure Care Plan for the Wood River West Ash Complex at Dynegy Midwest Generation, LLC., Wood River Power Station.

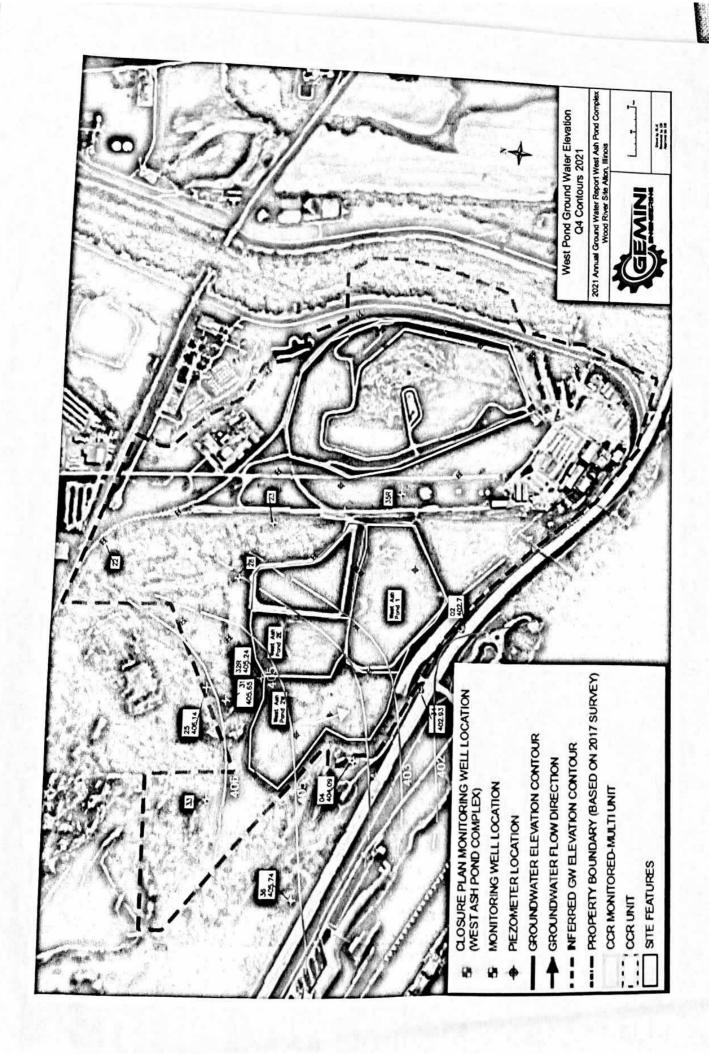

Natural Resource Technology, Inc. (NRT), October 19, 2016. Groundwater Monitoring Plan, West Ash Pond Complex, Wood River Power Station, Alton, Illinois.


NRT/OBG, October 17, 2017. Sampling and Analysis Plan, West Ash Pond Complex, Wood River Power Station, Alton, Illinois.


NRT/OBG, October 17, 2017. Statistical Analysis Plan, Wood River Power Station, Alton, Illinois.


USEPA, April 17, 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule.


APPENDIX A FIGURES



	[] 살님 [
	ADDENIDIV D	
	APPENDIX B	
	TABLES	
	- 1	
	[김희] 교육 [김 조실 중 [김 조절 조절 조절 조절 조	

TABLE 1
Summery of Analytical Analytics - Appendix St
West Ash Pond Complex

emple Location	Date Sampled	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	pH (S.U.)	Sulfate (mg/L)	TDS (mg/
	Background values	1.17	667.381	3316	0.4	BAITA	279	7629
ckeround / Uo	gradient Monitoring W							
CALD COMO / CP	11/2/2017	0,676	283 177	129	0.36	7.3 6.70	130	1300 906
	5/2/2018 8/1/2018	0.46	188	148	0.43	6.90	137	998
	2/19/2019	0.37	133	97	0.43	6.98	72 63	716 688
	5/29/2019 9/20/2019	0.32	131 165	100	0.45	6.78	79	858
	11/19/2019	0.49	176	142	0.43	6.83	122	912 896
	02/06/2020 02/06/2020 (Dup)	0.418	172	102	0.42	6.87 6.87	95 91	906
	04/22/2020	0.853	220	103	0.48	6.7	196	1230
	04/22/2020 (Dup)	0.821 0.544	217	106 83	0.49	6.93	197	1200
25	08/12/2020 08/12/2020 (Dup)	0.472	228	81	0.38	6.93	142	1030
	11/05/2020	0.643	225	82	0.36	6.94 6.94	164	972 976
	11/05/2020 (Dup) 2/23/2021	0.634	215 234	123	0.36	7.06	198	1050
	2/23/21 (Dup)	0.547	233	128	0.36	7.06 6.81	198	1070 568
	5/29/2021 5/29/21 (Dup)	0.212	110	55	0.5	6.81	54	554
	8/26/2021	0.474	181	56	0.34	0.64	121	794
	8/26/21 (Dup)	0.503	186	77	0.34	6.64	122	816 884
	11/30/2021 11/30/21 (Dup)	0,539 0.567	218	74	0.33	6.71	152	900
	11/2/2017	0.885	224	1090	0.28	7.5	190	3120 3720
	5/2/2018 8/1/2018	0.74	331 248	1320	0.33	7.00	287	3460
WED!	2/19/2019	1.12	220	572	0.29	7.00	176	2460
Territoria.	5/29/2019	0.99	256	1020	0.30	8.87	178	2960 3600
	9/20/2019	1.11	311 353	1300	0.25	6.72	192	3690
31	02/06/2020	0.989	385	1680	0.24	6.82	225	4320 5070
100	04/22/2020 08/12/2020	0.889	372 409	1730 1650	0.26	6.59	238	4170
	11/05/2020	0.967	218	723	0.33	7.1	149	2170
	2/23/2021	0.773	143	569	0.42	7.31 6.76	163	2000 2980
	5/29/2021 8/26/2021	0.881	192	1070 625	0.35	6.82	160	2130
	11/30/2021	1.08	137	330	0.4	7.01	178	1980 370
	11/2/2017	0.107	75.2	45	0.24	7.A 6.20	7	392
325	5/2/2018 7/31/2018	0.14	75	50	0.24	7.00	10	384
	2/19/2019	0.11	77	46	0.26	7.09	13	372
	9/20/2019	0.09	66	40	0.28	7.08	15	316
	02/07/2020	0.0825	64.2	- 41	0.27	7.12	16	352
36	04/22/2020	0.0799	59.8	41	0.28	7.36	23	304 338
	08/12/2020 11/05/2020	0.0905	68.2 69.1	43	0.28	7.09	16	336
	2/23/2021	0.113	76.1	42	0.28	7.27	12	362
	5/29/2021	0.0746	67.4	42	0.31	7.02	15	326 328
	8/23/2021 11/30/2021	0.0989	74 68.1	51	0.42	7.02	14	350
vngradient Mo	onitoring Wells					per e	-	982
T-130	11/2/2017 5/2/2018	4.47 5.53	196	76 53	0.17	7.5 6.20	230 212	968
	8/1/2018	4.13	192	62	0.15	6.70	231	982
	2/19/2019	3.76	202	69	0.15	6.80	177	992 828
	5/29/2019 9/20/2019	1.75	176	60	0.17	6.58	134	786
	11/19/2019	1.67	153	66	0.15	6.74	134	786 750
2	2/7/2020 4/22/2020	1.56 1.56	144	66 71	0.16	6.65	133	716
	8/12/2020	1.44	142	62	0.17	7	134	692
	11/5/2020	2.28	155 176	66	0.14	6.91	195	906 910
	2/23/2021 5/29/2021	2.08	162	63	0.18	6	218	832
	8/23/2021	2.16	169	63	0.25 0.15	6.57	202	852 866
-	11/30/2021	2.95 0.40	165 199	60	0.16	7.4	<10	788
	5/2/2018	0.39	226	59	0.18	6.20	10	782
	7/31/2018 2/19/2019	0.35	194	35	0.18	6.90	10	818 778
	5/29/2019	0.36	199	35	0.18	6.85	7	772
	9/20/2019	0.36	182 171	37 51	0.19	6.72	6	748 702
4	11/19/2019 2/7/2020	0.35	162	67	0.2	6.85	<10	702
	4/22/2020	0.321	165	74	0.21	6.73 7.12	7 9	732 692
	8/12/2020 11/5/2020	0.321	178 170	63	0.16	6.9	<10	685
	2/23/2021	0.42	187	53	0.16	7	7 <10	944 672
	5/29/2021 8/23/2021	0.301	169	51 48	0.22	6.77	7	710
H. E. E.	11/30/2021	0.33	196	38	0.16	6.78	<10	635
A PROPERTY	11/2/2017	0.72	100	91	0.35	7.5 6.50	76 108	1,190
	5/2/2018 8/1/2018	1.71	204 135	226 132	0.36	6.80	96	826
	2/19/2019	2.29	140	85	0.27	6.92	105	748
	5/29/2019 9/19/2019	1.70 3.61	99.5 117	66	0.35	6.91	76 93	610 588
	11/19/2019	3.41	104	61	0.24	6.72	102	600
32R	2/7/2020	6.22	107 82	14	0.16 0.17	6.86	105	516 400
	4/22/2020 8/12/2020	3.33	119	83	0.2	7.03	110	614
	11/5/2020	1.86	149	117	0.27	7.04	163	878 900
	2/23/2021 5/29/2021	1.55	156	121 68	0.3	7.12 6.89	126	666
	8/23/2021	2.13	156	97	0.45	6.7	124	782
	11/30/2021	1.83	162	147	0.31	7.4	153 <10	966
	11/2/2017 5/2/2018	2.33	254 191	152	0.69	6.20	10	945
	7/31/2018	2.36	200	178	0.67	6.80	<10	972
	2/19/2019	2.21	221	179	0.67	6.86	<10	762
	5/29/2019 9/20/2019	0.79	206 151	108	0.52	6.89	-50	662
	11/19/2019	0.86	168	87	0.42	6.90	6	722
34	2/7/2020	0.681	159	97	0.44	6.87 6.75	<10 <10	710
	4/22/2020 8/12/2020	0.799	165 156	103	0.44	7.1	8	658
	11/5/2020	0.765	182	112	0.29	6.88	<10	750 824
	2/23/2021	2.31	193	126	0.42	7.04	6.1	
	5/29/2021	1.67	193	146	0.48	6.62	<10	838

TABLE 2 Summary of Analytical Analyses - Appendix IV

Sample	Date Sampled	Sb, total	As, total	Ba, total	Be, total	Cd, total	Cr, total	Co, total	F, total	Pb, total	LL, total	Hg, total	Mo, total	Re 226/228 Combined	Se, total	TI, total
Location		(mg/L)	(mg/L)	(mg/L)	(mg/L) 0.004	(mg/L) 0.005	(mg/L)	(mg/L) 0.006	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCVL)	(mg/L)	(mg/L)
Beckgroun	GWPS ad / Upgradient Monit	oring Wells	0.0574							0.015	0,171	0.002	0.1	5	0.05	0.002
	5/2/2018 8/1/2018	0.001 <0.001	0.0339	0.212	<0.001 NA	< 0.0023	0.0015 <0.0015	0.0024	0.43	0.0024 <0.001	0.036	<0.0002 NA	0.0027	0.54	0.0012 <0.001	<0.002 NA
	2/19/2019 5/29/2019	<0.0001 0.0005	0.0048	0.102	<0.001	<0.001 0.0017	<0.002 <0.0015	0.002	0.43	<0.001 0.0011	0.029	<0.0002 <0.0002	0.005	0.19	<0.001 <0.001	<0.002
	9/20/2019	<0.001	0.0029	0.124	< 0.001	<0.001	<0.0015	<0.001	0.46	<0.001	0.034	<0.0002	0.0055	0.14	<0.001	<0.002
	11/19/2019 02/06/2020	<0.001	0.005	0.133	<0.001 <0.001	<0.001 0.0004	<0.0015 <0.0015	0.0012	0.43	<0.001 <0.001	0.0339	<0.0002 0.0002	0.0048	0,27 NA	<0.001	<0.002 <0.002
	02/06/2020 (Dup) 04/22/2020	<0.001 0.0005	0.0037 0.0048	0.126	<0.001 <0.001	0.0003	<0.0015	0.0014	0.41	<0.001 <0.001	0.033 0.0455	<0.0002 <0.0002	0.0045	NA NA	<0.001 0.0042	<0.002
	04/22/2020 (Dup)	0.0006	0.0044	0.144	<0.001	0.0016	0.0007	0.0009	0.49	< 0.001	0.0444	<0.0002	0.0049	NA .	0.004	<0.002
25	08/12/2020 08/12/2020 (Dup)	<0.001 <0.001	0.005	0.145	<0.001 <0.001	<0.001 0.0002	<0.0015 <0.0015	0.001	0.4	<0.001 <0.001	0.0449	<0.0002 <0.0002	0.0041	NA NA	<0.001	<0.002 <0.002
	11/05/2020 11/05/2020 (Dup)	0.0007	0.0213	0.167	<0.001	0.0015 0.0012	<0.0012	0.0023	0.36	0.0013	0.0505 0.0498	<0.0002 <0.0002	0.0047	NA NA	0.00012	<0.002
	2/23/2021	0.0005	0.0133	0,154	< 0.001	0.0006	<0.0015	0.0024	0.36	0.0012	0.0452	<0,0002	0.0034	NA	0.0014	<0.002
	2/23/21 (Dup) 5/29/2021	0.0005 <0.001	0.0114	0.162	<0.001	0.0005	<0.0015 <0.0015	0.0021	0.36 0.5	0.00011	0.0443	<0.0002 <0.0002	0.0035	NA NA	Q.0014 <0.001	<0.002 0.0011
	5/29/2021 (Dup) 8/26/2021	<0.001	0.0071	0.0961	<0.001 <0.001	0.0006	<0.0015 <0.0015	0.0017	0.49	0.0009 <0.001	0.0311	<0.0002 <0.0002	0.0034	NA NA	<0.001	<0.002
	8/26/21 (Dup)	<0.001	0.0053	0.12	<0.001	0.0002	<0.0015	0.0007	0.34	€0.001	0.0357	<0.0002	0.0019	NA NA	<0.001	0.0001
	11/30/2021 11/30/21 (Dup)	<0.001 <0.001	0.0038	0.121	<0.001 <0.001	0.0002 <0.001	<0.0015 0.0021	0.0014	0.34	<0.001 <0.001	0.0409	<0.0002 <0.0002	0.0017	NA NA	<0.001 <0.001	0.0001 <0.002
	5/2/2018 8/1/2018	0.001 <0.001	0.0022	0.181	<0.001 NA	0.001 <0.001	<0.0015 0.0039	0.001 <0.001	0.33	<0.001 <0.001	0.0903	<0.0002 NA	0.0063	2.96 1.43	0.0217	<0.002 NA
	2/19/2019	<0.001	0.002	0.162	< 0.001	<0.001	<0.002	<0.001	0.29	<0.001	0.059	<0.0002	0.008	1.28	0.036	<0.002
	5/29/2019 9/20/2019	< 0.0005	0.0015	0.145	<0.001	<0.001	<0.0015 <0.0015	< 0.0002	0.3	<0.001 <0.001	0.081	<0.0002 <0.0002	0.0048	0.00123	0.0252	<0.002 <0.002
-	11/19/2019	< 0.001	0.0009	0.158	<0.001	0.0006	< 0.0015	0.0002	0.25	<0.001	0.102	<0.0002	0.0035	2.88 NA	0.0262	<0.002 <0.002
31	02/06/2020	<0.001	0.0008	0.165 0.115	<0.001	0.0006	<0.0015 0.031	0.0003	0.24	<0.001 <0.001	0.0922	<0.0002 <0.0002	0.0039	NA.	0.0472	<0.002
46	08/12/2020 11/05/2020	0.0005	0.0013	0.174 0.143	<0.001	0.0006	<0.0015 <0.0015	0.0007 0.0004	0.27	<0.001 <0.001	0.118	<0.0002 <0.0002	0.0036	NA NA	0.0361	<0.002 <0.002
1	2/23/2021	0.0007	0.003	0.124	<0.001	0.0004	0.0013 J	0.0029	0.42	0.0018	0.0568	<0.0002	0.0059	NA .	0.0245	<0.002
	5/29/2021 8/26/2021	0.0008	0.002	0.138 0.154	<0.001 <0.001	0.0004	0.0013 J <0.0015	0.002	0.35	<0.001 <0.001	0.0616	<0.0002 <0.0002	0.0059 0.0047	NA NA	0.029	<0.002 0.0031
- 97	11/30/2021 5/2/2018	<0.001	0.0025	0.118	<0.001	0.0002	<0.0015	<0.001	0.4	<0.001 <0.001	0.057	<0.0002	0.0066 <0.0015	NA 2.41	0.0372 <0.001	<0.002 <0.002
	7/31/2018	<0.001	0.0028	0.3	<0.001 NA	<0.001	<0.0015 <0.0015	0,001 <0.001	0.24	<0.001	0.004	40.0002 NA	<0.0015	0.6	<0.001	NA.
800	2/19/2019 9/20/2019	<0.001	0.003	0.35	<0.001	<0.001 <0.001	<0.002 <0.0015	<0.001	0.26	<0.001 <0.001	0.004	<0.0002 <0.0002	0.002 <0.0015	0.82	<0.001 <0.001	<0.002 <0.002
40	11/19/2019	< 0.001	0.0021	0.242	<0.001	< 0.001	<0.0015	0.0001	0.28	<0.001	0.0039	<0.0002 <0.0002	<0.0015 <0.0015	0.85 NA	<0.001 <0.001	40.002 40.002
36	02/07/2020	<0.001 <0.001	0.0018	0.231	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0001	0.27	<0.001 <0,001	0.0041	<0.0002	<0.0015	NA	<0.001	<0.002
	08/12/2020 11/05/2020	<0.001	0.0021	0.264	<0.001	<0.001	<0.0015 <0.0015	0.0002	0.28	<0.001 <0.001	0.0034	<0,0002 <0.0002	<0.0015 <0.0015	NA NA	<0.001 <0.001	<0.002 <0.002
1.11	2/23/2021	<0.001	0.0022	0.277	<0.001	<0.001	<0.0015	Q.0005 J	0.28	<0.001	0.0032	<0.0002	<0.0015 <0.0015	NA NA	<0.001	<0.002 <0.002
	5/29/2021 6/23/2021	<0.001 <0.001	0.002	0.252	<0.001 <0.001	<0.001 <0.001	<0.0015 <0.0015	0.0002 J 0.0002 J	0.31	<0.001 <0.001	0.0041	<0.0002	<0.0015	NA	<0.001	<0.002
wngradie	11/30/2021 nt Monitoring Wells	<0.001	0.0022	0.257	<0,001	<0.001	<0.0015	<0.001	0.27	<0.001	0.0034	<0.0002	<0.0015	NA .	≼ 0.001	<0.002
	5/2/2018	<0.001	0.0025	0.111	<0.001	<0.001	<0.0015	0.002	0.15 0.15	<0.001 <0.001	0.0292	<0.0002 NA	0.0015 <0.0015	0.42	<0.001 <0.001	<0.002 NA
	8/1/2018 2/19/2019	<0.001	0.0021	0.0927	<0.001	<0.001	<0.0015 <0.002	<0.0017	0.15	<0.001	0.025	<0.0002	<0.002	0.13	<0.001	<0.002
533	5/29/2019 9/20/2019	<0.001	0.0016 0.0016	0.103 0.0649	<0.001	<0.001	<0.0015 <0.0015	0.0031	0.17	<0.001 <0.001	0.0221	<0.0002 <0.0002	<0.0009	0.34	<0.001	<0.002 <0.002
31.0	11/19/2019	<0.001	0.0013	0.0618	< 0.001	<0.001	<0.0015	0.0017	0.15	<0.001	20.7	<0.0002	0.0007	0.76 NA	<0.001 <0.001	<0.002 <0.002
2	02/07/2020	<0.001	0.0015	0.0598	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0015	0.16 0.16	<0.001 <0.001	0.0176 0.0187	<0.0002 <0.0002	0.0007	NA .	<0.001	<0.002
	08/12/2020	<0.001	0.0016	0.0636 0.0632	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0015	0.17	<0.001	0.0201	<0.0002 <0.0002	0.0007	NA NA	<0.001	<0.002 <0.002
30.0	11/05/2020 2/23/2021	<0.001 <0.001	0.002	0.0699	<0.001	<0.001	<0.0015	0.0016	0.17	<0.001	0.0198	€0.0002	0.0006	NA	<0.001	<0.002
-0.	5/29/2021 8/23/2021	<0.001 <0.001	0.0019 0.0025	0.0693	<0.001	<0.001	<0.0015 <0.0015	0.0017	0.18	<0.001	0.0231	<0.0002 <0.0002	<0.0006	NA NA	<0.001 <0.001	<0.002 0.0011
	11/30/2021	<0.001	0.0023	0.0734	<0.001	<0.001	<0.0015	0.002	0.15	<0.001 <0.001	0.0226	<0.0002 <0.0002	<0.0015	NA 0.57	<0.001	<0.002
	5/2/2018 7/31/2018	<0.001	0.0321	0.33	<0.001 NA	<0.001 <0.001	<0.0015 <0.0015	0.001 <0.001	0.18	<0.001	0.0028	NA.	<0.0015	0.29	<0.001	NA
	2/19/2019 5/29/2019	<0.001 <0.001	0.039	0.333	<0.001	<0.001 <0.001	<0.002 <0.0015	<0.001 0.0005	0.21	<0.001	0.003	<0.0002	<0.002 0.0008	1.41	<0.001 <0.001	<0.002
17.	9/20/2019	<0.001	0.0292	0.306	<0.001	<0.001	<0.0015	<0.001	0.19	<0.001	<0.003	<0.0002	<0.0015	0.58 1.3	<0.001	<0.002 <0.002
1725	11/19/2019 02/07/2020	<0.001	0.0345	0.309	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0004	0.2 0.2	<0.001 <0.001	0.0027 0.0022	<0.0002 0.0002	0.0008	NA	<0.001	40.002
4	04/22/2020	<0.001	0.0243	0.281	< 0.001	<0.001 <0.001	<0.0015 <0.0015	0.0004	0.21	<0.001 <0.001	0.0023	<0.0002 <0.0002	<0.0015 <0.0015	NA NA	<0.001	<0.002 <0.002
8	08/12/2020 11/05/2020	<0.001	0.0339	0.345	<0.001	<0.001	<0.0015	0.0004	0.16	<0.001	0.003	<0.0002	0.0006	NA NA	<0.001	<0.002
1	2/23/2021 5/29/2021	0.0011 <0.001	0.0217 0.0246	0.337	<0.001	<0.001	<0.0015 <0.0015	0.0013	0.16	0.0012 <0.001	0.0035	<0.0002 <0.0002	0.0139 <0.0015	NA NA	0.0013 <0.001	<0.002 <0.002
	8/23/2021	<0.001	0.0332	0.285	<0.001	<0.001	<0.0015	0.0002	0.32	<0.001	0.0023	<0.0002	<0.0015	NA NA	<0.001 <0.001	<0.002
	11/30/2021 5/2/2018	<0.001 0.001	0.0228	0.302	<0.002 <0.001	<0.001 <0.001	<0.0015 <0.0015	<0.002	0.16	<0.001 <0.001	<0.006 0.0271	<0.0002 <0.0002	0.0225	1.77	0.0287	<0.002
	8/1/2018	< 0.001	<0.001	0.182	NA <0.001	<0.001	<0.0015 <0.002	<0.001	0.33	<0.001 <0.001	0.021	NA <0.0002	0.0158	1.42	0.0158	NA <0.002
	2/19/2019 5/29/2019	<0.001	<0.001 0.0006	0.174 0.155	<0.001	<0.001	<0.0015	<0.001	0.35	< 0.001	0.0164	<0.0002	0.0172	0.86	0.0057	<0.002 <0.002
3 4	9/19/2019	<0.001	<0.001 0,0007	0.132 0.156	<0.001	<0.001 <0.001	<0.0015 <0.0015	< 0.001	0.21	<0.001 <0.001	0.0149	<0.0002 <0.0002	0.0055	0.49 1.48	0.0015	<0.002
32R	02/06/2020	<0.001	8000.0	0.0913	<0.001	< 0.001	<0.0015	<0.001	0.16	<0.001 <0.001	0.0107	<0.0002 <0.0002	0.0024	NA NA	<0.001 <0.001	<0.002 <0.002
70 1	04/22/2020	<0.001	0.0011	0.068	<0.001	<0.001 0.0002	<0.0015 <0.0015	<0.001 0.0001	0.2	<0.001	0.0165	<0.0002	0.0116	NA.	0.0025	<0.002
14	11/05/2020	<0.001	0.001	0.254	<0.001	0.0002	<0.0015 <0.0015	0.0012	0.27	<0.001 <0.001	0.0271	<0.0002 <0.0002	0.0178	NA NA	0.0008	<0.002 <0.002
	2/23/2021 5/29/2021	0.0005 0.0006	0.0008	0.251 0.184	<0.001 <0.001	0.0002 <0.001	<0.0015	0.0001	0.27	<0.001	0.0196	<0.0002	0.0116	NA .	0.0054	<0.002 <0.002
	8/23/2021 11/30/2021	<0.001 <0.001	0.0008 <0.001	0.231 0.186	<0.001 <0.001	<0.001	<0.0015 <0.0015	0.0002 <0.001	0.45	<0.001 <0.001	0.0243	<0.0002 <0.0002	0.0138 0.0153	NA NA	0.004	<0.002
1	5/2/2018	< 0.001	0.0153	0.356	< 0.001	<0.001	<0.0015	0.001	0.69	<0.001 <0.001	0.0022	<0.0002 NA	0.0015 <0.0015	0.9	<0.001 <0.001	<0.002 NA
1	7/31/2018 2/19/2019	<0.001	0.0156	0.347	NA <0.001	<0.001 <0.001	<0.0015 <0.002	<0.001 <0.001	0.67	<0.001	0.003	<0.0002	<0.002	0.66	≼ 0.001	<0.002
100	5/29/2019	< 0.001	0.0692	0.355	<0.001	<0.001	<0.0015	0.0004 <0.001	0.52 0.41	<0.001 <0.001	0.0024 <0.003	<0.0002 <0.0002	0.0024 <0.0015	0.21	<0.001	<0.002
100	9/20/2019 11/19/2019	<0.001	0.0307	0.278	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0003	0.42	<0.001	0.0021	<0.0002	0.0012	0.71	<0.001	≼ 0.002 ≼ 0.002
34	02/07/2020	<0.001	0.0267	0.278	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0003	0.44	<0.001 <0.001	0.0019	<0.0002 <0.0002	0.001	2 2	<0.001	<0.002
319	08/12/2020	< 0.001	0.0247	0.3	<0.001	<0.001	<0.0015	0.0003	0.41	<0.001	0.0022	<0.0002	0.0009	NA NA	<0.001 <0.001	<0.002 <0.002
1	11/05/2020 2/23/2021	<0.001 <0.001	0.0279	0.348	<0.001	<0.001 <0.001	<0.0015 <0.0015	0.0003	0.29	<0.001 <0.001	0.003	<0.0002 <0.0002	0.0013	NA NA	<0.001	<0.002
	5/29/2021	<0.001	0.0225	0.338	<0.001	<0.001	40.0015	0.0002	0.48	<0.001	0.0028	<0.0002	0.002	NA NA	<0.001	<0.002 <0.002
	8/23/2021	<0.002	0.0185	0.305	<0.001	<0.001	€0.0015	0.0002	0.6	< 0.001	0.0023	<0.0002				

SITE NAME: CTI Development, LLC (Formerly Wood River Power Station)
CCR UNIT: West Ash Pond 1

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 40 CFR § 257.83(b)

Rev.(0) - 12/1/2020

(b)(1) If the existing or new CCR surface impoundment or any lateral expansion of the CCR surface impoundment is subject to the periodic structural stability assessment requirements under § 257.73(d) or § 257.74(d), the CCR unit must additionally be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at minimum, include: (i) A review of available information regarding the status and condition of the CCR unit, including, bit not limited, files available in the operating record(e.g., CCR unit design and construction information required by §257.73(d) and §275.74(d), the results of inspections by a qualified person, and the results of previous annual inspections); (ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures; and (iii) A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.

SITE INFORMATION	
Site Name & Address Date of Inspection	Former Wood River Power Station Madison County, Illinois 62017 09/11/2021
Operator Name/ Address	CTI Development, LLC 2275 Cassens Drive, Suite 118 Fenton, MO 63026
CCR Unit	West Ash Pond 1

INSPECTION REPORT 40 CFR §257.83(B)(2) DATE OF INSPECTION: 9/11/2021	
(b)(2)(i) Any changes in geometry of the structure since the previous annual inspection	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(ii) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection.	See on page 2.
(b)(2)(iii) The approximate minimum, maximum, and present depth and elevation of impounded water and CCR since the previous annual inspection.	See on page 2.
(b)(2)(iv) The storage capacity of the impounding structure at the time of the inspection.	Approximately 435 acre-feet

(b)(2)(v) The approximate volume of impounded water and CCR contained in the unit at the time	Approximately 410 acre-feet.
of the inspection (b)(2)(vi) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
operation and safety of the CCR unit. (b)(2)(vii) Any other change(s) which may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.

	THE REAL PROPERTY OF THE PARTY	
R § 257.83(b)(2)(ii) Instrument ID#	туре	Maximum recorded reading since previous annual inspection (ft)
	Piezometer	N/A
P016	Piezometer	443.5
P020	Piezometer	431.1
P025 P026	Piezometer	431.2

0 CFR § 257.83(b)(2)	(iii)	January et moreon	de la la la la superiori de la	A STATE OF THE PARTY OF THE PAR		Annual State of State State
Since Previous		Ap	proximate Ele	evation & Dep	th	
Inspection	Elevation (ft)		D		Depth (ft)	and the second
inspection	Minimum	Present	Maximum	Minimum	Present	Maximun
	William	N/A			N/A	
Impounded Water		14/75	438	16	THE PERSON NAMED IN	24
CCR	430	by the first had	438	10		

SITE NAME: CTI Development, LLC (Formerly Wood River Power Station)

CCR UNIT: West Ash Pond 2E

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 40 CFR § 257.83(b)

Rev.(0) - 12/1/2020

(b)(1) If the existing or new CCR surface impoundment or any lateral expansion of the CCR surface impoundment is subject to the periodic structural stability assessment requirements under § 257.73(d) or § 257.74(d), the CCR unit must additionally be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at minimum, include: (i) A review of available information regarding the status and condition of the CCR unit, including, but not limited, files available in the operating record(e.g., CCR unit design and construction information required by §257.73(d) and §275.74(d), the results of inspections by a qualified person, and the results of previous annual inspections); (ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures; and (iii) A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.

SITE INFORMATION	Former Wood River Power Station
Site Name & Address Date of Inspection Operator Name/ Address	Madison County, Illinois 62017 09/11/2021
	CTI Development, LLC 2275 Cassens Drive, Suite 118 Fenton, MO 63026
CCR Unit	West Ash Pond 2E

DATE OF INSPECTION: 9/11/2021 (b)(2)(i) Any changes in geometry of the structure since the previous annual inspection	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(ii) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection.	See on Page 4.
(b)(2)(iii) The approximate minimum, maximum, and present depth and elevation of impounded water and CCR since the previous annual inspection.	See on Page 4.

(b)(2)(iv) The storage capacity of the impounding structure at the time of the inspection.	Approximately 355 acre-feet
(b)(2)(v) The approximate volume of impounded water and CCR contained in the unit at the time of the inspection	Approximately 289 acre-feet.
(b)(2)(vi) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit.	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(vii) Any other change(s) which may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.

Instrument ID#	Туре	Maximum recorded reading since previous annual inspection (ft)
No Instruments	2) 2000 (mm/s)	Court - New Power State of Court - Want & 62017
(-) agreed - (
and the second second	The state of the s	Auto V ISS 1

Since Previous		Ar	proximate Ele	evation & Dep	oth	
Inspection	Elevation (ft)		Depth (ft)		OC CHAPT	
	Minimum	Present	Maximum	Minimum	Present	Maximum
mpounded Water	The second second	N/A	4.45.00	de desego o	N/A	
CCR	431.6		436.38	17.6		22.38

SITE NAME: CTI Development, LLC (Formerly Wood River Power Station)
CCR UNIT: West Ash Pond 2W

ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER 40 CFR § 257.83(b)

Rev.(0) - 12/1/2020

(b)(1) If the existing or new CCR surface impoundment or any lateral expansion of the CCR surface impoundment is subject to the periodic structural stability assessment requirements under § 257.73(d) or § 257.74(d), the CCR unit must additionally be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at minimum, include: (i) A review of available information regarding the status and condition of the CCR unit, including, bit not limited, files available in the operating record(e.g., CCR unit design and construction information required by §257.73(d) and §275.74(d), the results of inspections by a qualified person, and the results of previous annual inspections); (ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit and appurtenant structures; and (iii) A visual inspection of any hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit for structural integrity and continued safe and reliable operation.

SITE INFORMATION	
Site Name & Address Date of Inspection	Former Wood River Power Station Madison County, Illinois 62017 09/11/2021
Operator Name/ Address	CTI Development, LLC 2275 Cassens Drive, Suite 118 Fenton, MO 63026
CCR Unit	West Ash Pond 2W

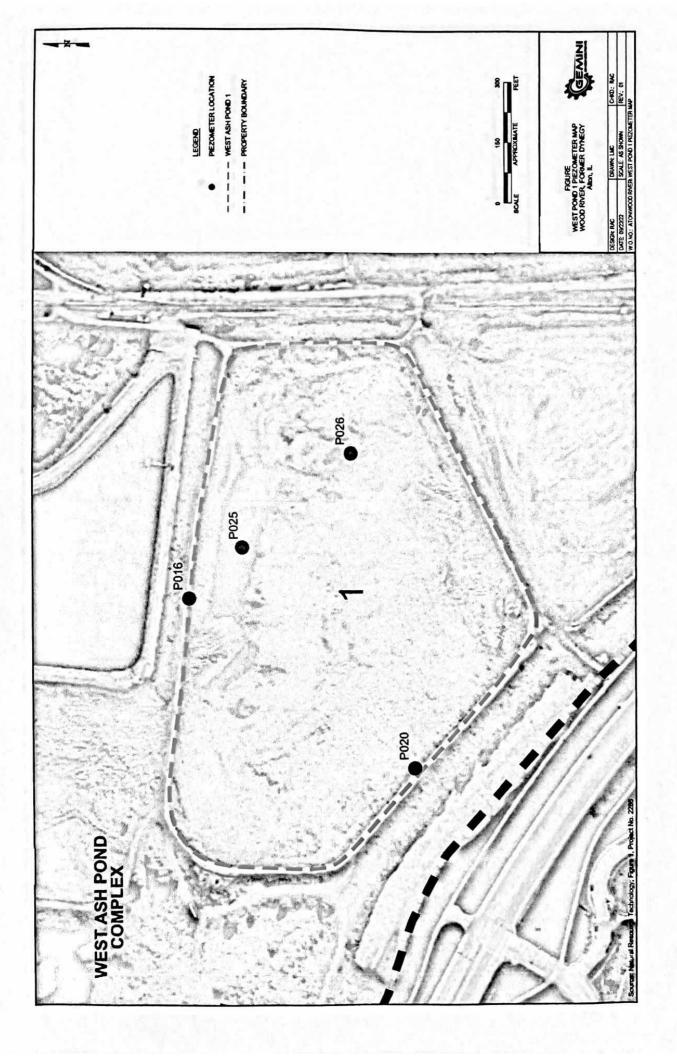
INSPECTION REPORT 40 CFR §257.83(B)(2) DATE OF INSPECTION: 9/11/2021		
(b)(2)(i) Any changes in geometry of the structure since the previous annual inspection	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have take place since the previous annual inspection.	
(b)(2)(ii) The location and type of existing instrumentation and the maximum recorded readings of each instrument since the previous annual inspection.	See on Page 6.	
(b)(2)(iii) The approximate minimum, maximum, and present depth and elevation of impounded water and CCR since the previous annual inspection.	See on Page 6.	
(b)(2)(iv) The storage capacity of the impounding structure at the time of the inspection.	Approximately 240 acre-feet	

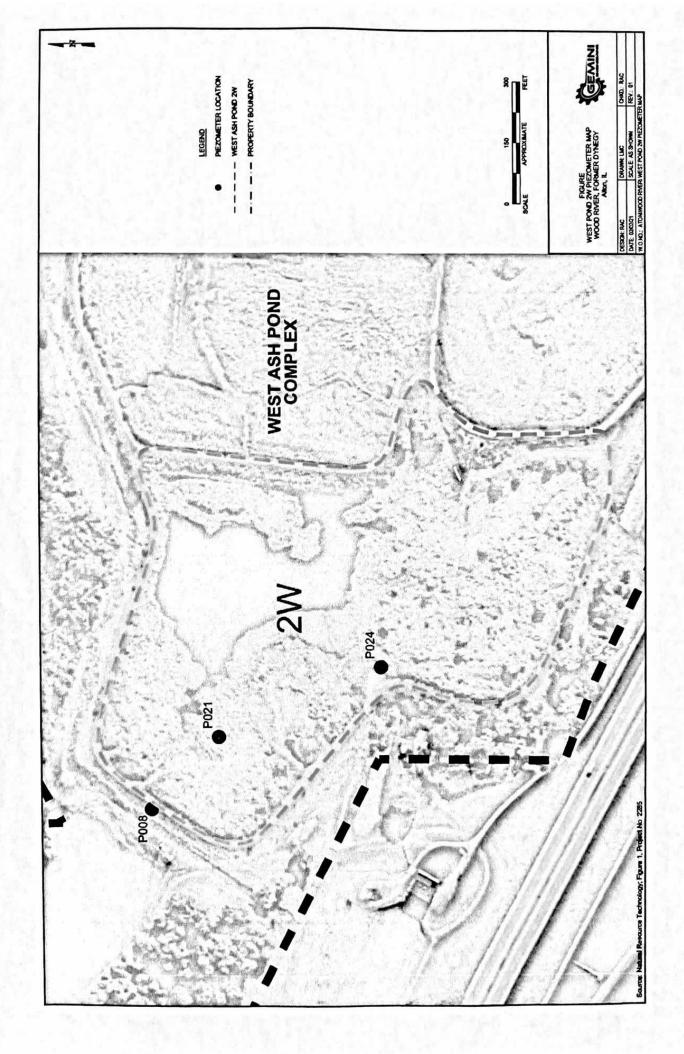
(b)(2)(v) The approximate volume of impounded water and CCR contained in the unit at the time of the inspection	Approximately 308 acre-feet.
(b)(2)(vi) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit.	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.
(b)(2)(vii) Any other change(s) which may have affected the stability or operation of the impounding structure since the previous annual inspection.	Based on a review of the CCR unit's records and visual observation during on-site inspection, no changes in geometry of the structure have taken place since the previous annual inspection.

40 CFR § 257.83(b)(2)(ii)				
Instrument ID#	Туре	Maximum recorded reading since previous annual inspection (ft)		
P008	Piezometer	409.9		
P021	Piezometer	410.4		
P024	Piezometer	407.3		

i0 CFR § 257.83(b)(2)	(iii)					
Since Previous Inspection	Approximate Elevation & Depth					
	Elevation (ft)			Depth (ft)		
	Minimum	Present	Maximum	Minimum	Present	Maximum
Impounded Water		N/A			N/A	
CCR	425		433.2	11		19.2

40 CFR § 257.83(b) - ANNUAL INSPECTION BY A QUALIFIED PROFESSIONAL ENGINEER


I, Adam Peetz, P.E., certify under penalty of law that the information submitted in this report was prepared by me and I am a Registered Professional Engineer under the laws of the State of Illinois. The information submitted, is to the best of my knowledge and belief, true, accurate, and complete. Based on the annual inspection, the design, construction, operation, and maintenance of the CCR Unit is consistent with recognized and generally accepted good engineering standards.



Adam Peetz, P.E.

Illinois PE No. 062-071969, Expires + 11/30/23

Date: 9/36/22

