

December 20, 2023

Dr. Eun Ju Lee, P.E. Project Manager Industrial and Hazardous Waste Permits Section Coal Combustion Residuals Program, MC-130 Waste Permits Division Texas Commission on Environmental Quality P. O. Box 13087 Austin, Texas 78711-3087

RE: Monticello Steam Electric Station – CCR114, ISW 30081, EPA ID No. TXD054378948, Tracking No. 27262899; RN102285921/CN605736982 New CCR Registration – Technical NODs #3

Dear Dr. Lee:

On behalf of Golden Eagle Development, LLC (Golden Eagle), Gemini Engineering (Gemini) is submitting responses to the deficiencies identified provided September 20, 2023, regarding the CCR Registration Application to the Texas Commission on Environmental Quality for the former Monticello Steam Electric Station (MOSES) facility.

Deficiencies

Deficiency #1: *Revise the title of the referenced table to state, "Table VI.C.1 – Ground Water Detection Monitoring Parameters."*

Response: Table VI.C.1 was revised and is included in a revised Attachment #12.

Deficiency #2: The potentiometric surface maps submitted with the facility's CCR application and the 2021 Texas Pollution Discharge Elimination System (TPDES) ground water monitoring report (GWMR) appear to be inconsistent with respect to the direction of ground water flow beneath the CCR units.

1. Provide a discussion regarding why these potentiometric surface maps are inconsistent with respect to the ground water direction in relation to the CCR units and revise maps in ground water report if necessary. Data from nearby TPDES ground water wells may be used to prepare a more detailed potentiometric surface map to substantiate your conclusion.

Revise application to include additional information to demonstrate that W-31, W 32, *and* W-33 *are located upgradient from the CCR units and do not become downgradient due to seasonality.*

Response: Upon review of topographic maps and potentiometric data it appears that the BAP area is at a higher elevation and the shallow groundwater flows away from the BAP area and towards the east and west. Therefore, the monitoring wells: W-31, W-32, and W-33 are upgradient and at a high point in the area. An area specific groundwater study has not been completed; but recent potentiometric data supports the 2019 potentiometric surface map. Additionally, the CCR monitoring wells were not used in the TPDES potentiometric surface maps. The TPDES monitoring wells are deeper than the CCR monitoring wells; therefore, the CCR monitoring wells should provide a more accurate demonstration of the shallow groundwater in the BAPs area. A figure is included in the revised Attachment #15.

Deficiency #3: Provide a discussion regarding whether the background concentrations for sulfate and total dissolved solids accurately represent the quality of background that has not been affected by leakage from any CCR unit.

Based upon a review of the statistical analyses conducted in response to Deficiency's #5 through #7, there does not appear to be sufficient statistical evidence to state that the background monitoring wells have been affected by leakage from any CCR unit in the immediate vicinity of the ash ponds. Some natural variability has occurred during some events in the upgradient background monitoring wells. The CCR Groundwater Background Evaluation Report was updated and is included in a revised Attachment #15.

Deficiency #4: *Revise referenced tables to ensure: analytical results for boron are provided; all values that were not used in background ground water quality calculations are identified; and that the existing and updated background values with respect to each ground water monitoring well (MW) and each constituent in 40 CFR Part 257 Appendix III are included.*

Response: Table 1 (Appendix B) in the Updated CCR Groundwater Background Evaluation Report presents the analytical data used to perform the background calculations. The column titled "U-D-NE" identifies "U" – Upgradient (monitoring wells MW-31, MW-32, and MW-33), "D" – Downgradient (monitoring wells MW-29, MW-30, MW-34, and MW_35), and "NE" – Nature & Extent monitoring wells of which there are no current monitoring wells so designated. The table is organized with the upgradient monitoring wells presented first, followed by the downgradient monitoring wells in a simple numerical order (decreasing).

All parameters identified in 40 CFR Part 257 Appendix III are included in Table 1 (Appendix B) and were statistically analyzed. As Table 1 (Appendix B) is used for input into statistical software, no units of measure are identified in the table, however, all units are milligrams per Liter (mg/L) except for pH whose units are Standard Units.

Deficiency #5: Revise to include a discussion regarding the type of probability distribution represented by the ground water sample data. The discussion should include how data was analyzed, whether sample data used to obtain initial/updated background concentrations is normally distributed, whether the distribution was mathematically transformed, whether any data was removed, and the probability distribution that best fits the data.

Response: The data was analyzed following the procedures outlined in the *CCR Combustion Residual Rule Statistical Analysis Plan* (SAP) *for Ash Ponds at the Monticello Steam Electric Station*¹ prepared by Pastor, Behling & Wheeler, LLC, dated October 11, 2017.

The data was first analyzed on how to handle duplicate data, non-detect data, and anomalous detections as described in Section 2. Table 2 (Appendix B) summarizes basic information on the background data set. Parameters boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS) had 100% detection rates (i.e., no non-detect data). Only Fluoride had non-detection data identified in the upgradient monitoring well MW-31, and the downgradient monitoring wells MW-29, MW-34, and MW-35.

Per the 2017 SAP1, the upgradient monitoring well MW-31 data, and the data from the downgradient monitoring wells MW-29, and MW-34 were required to utilize robust regression order statistics (RROS) to estimate the summary statistics used in the background statistical analysis. Non-parametric statistical approaches were used to evaluate the downgradient monitoring well MW-35.

The next step was to test for statistical independence validity which is described in Section 3 of the SAP1. The four steps used to confirm validity were:

1. Spatial stationarity (Section 3.1) using side-by-side box plots and one-way analysis of variance (ANOVA) or Kruskal-Wallis (K-W) test to determine if spatial variability exists.

2. Temporal stationarity (Section 3.2) using time-series charts and Mann-Kendal or Thiel-Sen trend tests to determine if temporal stationarity exists.

3. Lack of autocorrelation (Section 3.3) using the von Neumann ratio test statistic only if the percent detection exceeds 50%.

4. Lack of statistical data outliers (Section 3.4) using the box plots from the spatial stationarity and Dixon's or Rosner's test.

The statistical analyses conducted to confirm statistical independence validity and analytical results are described under Deficiency #6 Response below. The CCR Groundwater Background Evaluation Report was updated and is included in a revised Attachment #15.

Deficiency #6: Revise to include a statistical evaluation of background data for the following: spatial or temporal stationarity, trends and/or seasonal variation, homogeneity of variance, outliers, and normality. Please ensure that background values will be evaluated for the items referenced above with statistical methods appropriate for the background data distribution (i.e. parametric vs. nonparametric methods).

Response: Based upon Section 2 of the SAP1, the data was processed to determine how many detections, non-detections, and any missing data existed for each monitoring well by parameter. No duplicate data was identified in the laboratory test analytical results; therefore, no duplicate data was removed. Several J-flagged values were identified only for Fluoride. These J-flagged values were considered as detected concentrations. Anomalous detections will be discussed as part of the spatial stationarity below.

¹ Pastor, Behling & Wheeler, LLC, CCR Combustion Residual Rule Statistical Analysis Plan (SAP) for Ash Ponds at the Monticello Steam Electric Station, October 11, 2017.

Table 2 (Appendix B) in the Updated CCR Groundwater Background Evaluation Report indicates that apart from Fluoride, all other parameters had no non-detections; therefore, no data substitution (i.e., replacement for non-detects) was necessary. The four monitoring wells that had non-detections for Fluoride varied from 25% to 75% non-detections. Based upon the SAP1, monitoring wells MW-31, MW-29, and MW-34 required the use of RROS procedures while MW-35 required the use of non-parametric procedures.

To initiate the *Spatial Stationarity* evaluation, box plots were first plotted to determine whether any spatial stationarity exists. See Figure 3 (Appendix A) which was developed in response to Deficiency #7. See Table 3 (Appendix B) for comments on the spatial stationarity evaluation of the box plots. Due to the number of non-detects and J-values for Fluoride, no further statistical analysis could be conducted for spatial stationary for Fluoride. The box plots indicate that spatial stationarity exists between the upgradient and downgradient monitoring wells.

To evaluate all other parameters, an ANOVA analysis (non-parametric K-W test) was conducted using ProUCL5. See Table 4 (Appendix B) for the results of the analysis on all parameters except Fluoride. The analyses indicate that for all parameters, there exists a significant difference in the mean/median characteristics between the upgradient and downgradient monitoring wells during the background sampling events.

To initiate the *Temporal Stationarity* evaluation, time-series charts were prepared. Figure 4 (Appendix A) presents the time-series chart by parameter (alphabetical) and sub-divided by monitoring well (numerical). These time-series charts were generated in EXCEL. The time-series charts range from the initial background sample date (10/15/15) to the last 2022 sample date (12/17/22). See Table 2 (Appendix B) for comments on the visual evaluation of the time-series charts.

Mann-Kendall or Thiel-Sen trend analysis was then performed based on the distribution (normal, gamma-distributed, log-normal, or non-parametric) of the background data. The distribution (Goodness of Fit statistical method) of the background data was determined using the software program EnvStats² under the RStudio³ graphic user interface. Table 2 (Appendix B) summarizes the goodness of fit analyses for each monitoring well and parameter. Figure 6 (Appendix A) presents the constituent trend analysis using the GSI Mann-Kendall Toolkit⁴. Table 6 (Appendix B) summarizes the findings of this analysis.

Based upon the analyses conducted, no clear increasing or decreasing trends were readily identified as a *Temporal Stationarity* for the background data sets.

² Millard, Steven, *EnvStats – An R Package for Environmental Statistics*, 2013. Website: <u>https://cran.r-project.org/web/packages/EnvStats/index.html</u>

³ Posit, *RStudio*, October 17, 2023, Website: <u>https://posit.co/download/rstudio-desktop/</u>

⁴ GSI Environmental Inc., GSI Mann Kendall Toolkit, 2023. Website: <u>https://www.gsienv.com/product/gsi-mann-kendall-toolkit/</u>

To evaluate the *Lack of Auto Correlation*, EnvStats2 was used to determine whether any autocorrelation relationship was present in the background data using von Neumann's rank test. Table 7 (Appendix B) summarizes the analytical results from von Neumann's rank test using EnvStats2.

Based upon the comparison of the P-value to the alpha significance value (1-Confidence Level) of 0.05, no parameters exhibited any auto correlation indicating that sampling has been conducted with sufficient time between sampling events, that the sampling events do not sample from the same volume of ground water as the previous samples.

To evaluate the presence of a lack of *Statistical Outliers*, ProUCL⁵ was used to analyze all the parameters except for Fluoride using both Rosner's and Dixon's tests, box plots as described under response to Deficiency #7, and Q-Q plots for selected parameters. The analysis of the data using Dixon's test was borderline as the sample size was 24 rather than the generally accepted value of 25 or more. Table 8 (Appendix B) presents the analysis for outliers. Although several data points were identified as outliers, based upon the data check to confirm if conditions could be identified that would have resulted in outliers being so designated, no conditions were identified. Therefore, all data points identified in Table 8 (Appendix B) are not considered outliers and these data points were left in all statistical analyses.

The background data was evaluated per the process described in SAP1.

Deficiency #7: Revise to include legible box plot data. Revise box plots to ensure the following information is legible: the 0th, 25th, 50th, 75th, and 100th percentiles; sample mean and median; all applicable data points; and non-detects.

Response: Box Plots were recreated to address the items identified in Deficiency #7 and are presented in Figure 3 (Appendix A) in the Updated CCR Groundwater Background Evaluation Report. The box plots were created using the U.S. Environmental Protection Agency's software program, ProUCL5. The box plots generated by ProUCL represent five-point summary graphs as follows:

- Q1 equals the 25th percentile, Q2 equals the 50th (median), and Q3 equals the 75th percentile.
- The interquartile range (IQR) equals Q3-Q1 (the height of the box in a box plot).
- The lower whisker starts at Q1, and the upper whisker starts at Q3.
- The lower whisker extends up to the lowest observation or (Q1 1.5 * IQR) whichever is higher.
- The upper whisker extends up to the highest observation or (Q3 + 1.5 * IQR) whichever is lower.
- The horizontal bars (also known as fences) are drawn at the end of the whiskers.
- Observations that lie outside the fences (above the upper bar and below the lower bar) represent potential outliers.

⁵ U.S. Environmental Protection Agency, *Statistical Software ProUCL 5.2 for Environmental Applications for Data Sets with and without Nondetect Observations*, June 14, 2022. Website: <u>https://www.epa.gov/land-research/proucl-software</u>

Box plots generated by ProUCL do not include a notification that represents the sample mean. Any box plots that have non-detects also show a red line which represents the highest non-detect value for the group of monitoring wells by parameter.

Deficiency #8: Revise to include a discussion regarding how initial/updated background values were calculated. The discussion should include: a step-by-step explanation of the assumptions used to update the background values, why they were updated, and how they were calculated; the computer program and statistical methods used for the analysis; which ground water MWs contributed to background calculations; and the background values for each applicable ground water MW.

Response: Per the 2017 SAP1, after completion of the statistical analyses discussed in Response to Deficiency #s 4 through 7, the background data was determined to be acceptable for use in calculating prediction limits as required in the SAP1. Fluoride analytical results were modified in accordance with the SAP1 by substituting $\frac{1}{2}$ of the Reporting limits for all non-detect analytical results.

Per the SAP1, prediction limits were calculated for use in determining whether any groundwater monitoring analytical results beyond the background sampling events would result in a Statistically Significant Increase (SSI). To calculate the prediction limits, EnvStats2 was used to calculate these limits. Variables used to calculate the prediction limits included the following:

- Distribution of the data
- Sample size
- Prediction interval method and type
- Calculated confidence level as shown on page 19-8 of the Unified Guidance⁶ document

Table 9 (Appendix B) presents the prediction limits calculated for each parameter. The below table presents a summary of the calculated prediction limits:

	Calculated
Parameter	Prediction Limits
Boron (mg/L)	8.52
Calcium (mg/L)	311
Chloride (mg/L)	182
Fluoride (mg/L)	2.10
pH (field) (s.u.)	5.27-7.36
Sulfate (S04) (mg/L)	1,193
Total Dissolved Solids (TDS) (mg/L)	2,160

The SAP1 states that in determining the background value one is to utilize the higher of the Upper Prediction Limit and the reporting limit. Table 10 summarizes the reporting limit, the prediction limits and what is the selected background value for each parameter based upon the directives in

⁶ U.S. Environmental Protection Agency, *Unified Guidance: Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities*, March 2009 (commonly called the Unified Guidance document)

the SAP1. Table 11 presents additional information which assisted in the evaluation of the background values.

The SAP1 requires that for each round of sampling conducted after the background sampling events (commonly referred to as post-background sampling events) each result is to be compared to the background value to determine if an SSI has occurred.

Deficiency #9: Revise to include a discussion explaining how background concentrations will be used to evaluate groundwater. This should include: whether an interwell or intrawell analysis will be used, the statistical methods used to determine whether a statistically significant increase (SSI) has occurred, and whether different statistical methods will be used for certain constituents or wells.

Response: Per the 2017 SAP1, after every detection monitoring event, the constituent concentrations from each downgradient point of compliance monitoring well will be compared to the background values to ascertain if an SSI above background does or does not exist. Possible outcomes from comparing the detection monitoring constituent concentrations in each downgradient monitoring well to their respective background values are as follows:

• All detection monitoring constituent concentrations in a downgradient compliance monitoring well are less than or equal to their respective background values; or

• One or more detection monitoring constituent concentrations in a downgradient compliance monitoring well are above their respective background values.

Should any point of compliance monitoring well concentrations from the current sampling event exceed their respective background value, that monitoring well from which the exceedance occurred is to be resampled for that parameter only as described in the SAP1. If the resample indicates that the target detection monitoring constituent concentration(s) in the monitoring well or wells is less than or equal to their respective background value(s), then it can be concluded that an SSI over background for all detection monitoring constituents does not exist, since concentrations in one (1) sample of the two (2) independent samples do not exceed the appropriate background value(s).

Should any point of compliance monitoring well concentrations from the current sampling event exceed their respective background value, then an SSI over background for this target detection monitoring constituents can be concluded. If an SSI is indicated, the following is to occur within 90 days of the resampling event:

• Establish an assessment monitoring program as described in the SAP1; or

• Demonstrate that a source other than the CCR unit caused the SSI over the background value for a constituent, or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in ground water quality.

If a successful demonstration is completed within the 90-day period, the CCR unit may continue with the detection monitoring program.

The SAP does not require any specific statistical processes nor interwell or intrawell analysis.

Deficiency #10: Revise report to add a narrative explaining how the constituents in each ground water MW were evaluated for an SSI for ground water sampled during 2022. Include the specific statistical methods used, whether any data was removed and justification for removal, copies of charts or graphs that were used, and any other information used to perform the evaluation.

Response: Based on the responses to Deficiency's #5 through #9 presented previously, the parameters in each downgradient point of compliance monitoring well are compared to their respective background values as described in the 2017 SAP1. There are two (2) possible outcomes identified below:

• All detection monitoring constituent concentrations in a downgradient compliance monitoring well are less than or equal to their respective background values; or

• One or more detection monitoring constituent concentrations in a downgradient compliance monitoring well are above their respective background values.

A table is included in Attachment 15 that summarizes the point of compliance groundwater monitoring data from the two (2) sampling events in 2022 compared to new the background values. All downgradient monitoring wells were below the background values. The CCR Groundwater Background Evaluation Report was updated and is included in a revised Attachment #15.

Some natural variability has occurred during some events in the upgradient background monitoring wells.

Deficiency #11: Revise to specify whether the following items have been removed or will be left in place, with respect to each CCR unit: 4-in thick concrete revetment, clay liner, underground pipes, other liner system components, and underlying soils beneath the liner system.

Response: Per the demolition contractor, the ash ponds did not contain a revetment mat above the clay liner as noted in original design drawings. Some concrete structures and piping remain on the berms; however, the pipes are abandoned and the coal burning units have been demolished. There is no underground piping in the BAPs. A few inches of liner material were removed during ash removal, but the clay liner still is still present until the units are regulatorily closed.

Deficiency #12: *Revise to include a discussion explaining how the facility will determine whether any underlying soils beneath the CCR units have been affected by releases from the CCR unit and how the facility plans to remove or decontaminate these areas. See federal register preamble 80 FR 21412 for more information.*

Provide a demonstration that the closure by removal of CCR units meet ground water protection standards including Appendices III & IV constituents prescribed by the cited rule.

Response: The CCR regulations do not require soil sampling or proof that soil is impacted and there have been no known documented releases at the CCR units. Per the Federal Register Preamble: "*The first phase is detection monitoring where indicators would be monitored to determine whether groundwater was potentially being contaminated*".

Additionally, per the TCEQ Draft Technical Guidance #32: "After the completion of background monitoring, the Owner/Operator must sample all monitoring wells on a semiannual basis for the constituents listed in Appendix III adopted by reference in 30 TAC §352.1421, unless another sampling schedule is approved by the TCEQ. The goal of detection monitoring is to identify changes in groundwater chemistry that may indicate a release from the CCR unit".

As documented in the 2022 Annual Groundwater Monitoring and Corrective Action Report (Gemini 2023), the groundwater laboratory results of the downgradient point of compliance monitoring wells at the waste boundary do not indicate a release from the CCR units. The bottom ash ponds are lined with three-foot clay liners that meet 40 CFR 257.71, therefore; it is not likely that a release has occurred from the liner system.

Closure by removal has been completed and certified; and upon a review of the BAP groundwater data for the last several years, Assessment Monitoring has not been implemented at the BAPs; therefore, groundwater protection standards have not been established pursuant to 40 CFR 257.95 and there is no recent Appendix 4 analytical data for comparison. Based on the above information the CCR Units should be considered closed by removal.

If you have any questions or require additional information, please call me at 512-566-6878 or at <u>A.Kaiser@GeminiSTL.com</u>.

Respectfully,

Chan J. Kaiser

Adam Kaiser, PE Senior Project Engineer

cc: Golden Eagle Development

Attachment #12 for VI.29A – Table VI.C.1 – GW Detection Monitoring Parameters NODs #1 – December 20, 2023

Registration No.: CCR 114 Registrant: Golden Eagle Development

Table VI.C-1 Groundwater Detection Monitoring Parameters					
Parameter	Sampling Frequency	Analytical Method	Practical Quantification Limit (units)	Concentration Limt ¹	
Boron	Semi-Annual	EPA 6020	<0.03 mg/L	8.52 mg/L	
Calcium	Semi-Annual	EPA 6020	<1.0 mg/L	311 mg/L	
Chloride	Semi-Annual	EPA 9056A	<1.0 mg/L	184 mg/L	
Fluoride	Semi-Annual	EPA 9056A	<0.15 mg/L	2.93 mg/L	
Sulfate	Semi-Annual	EPA 9056A	<25.0 mg/L	1,190 mg/L	
Total Dissolved Solids	Semi-Annual	EPA 2540	<10.0 mg/L	2,150 mg/L	

Table VI.C-1. - Groundwater Detection Monitoring Parameters

1 The concentration limit is the basis for determining whether a release has occurred from the CCR unit/area.

Attachment #15 for VI.29.B – Groundwater Background Evaluation NOD #2 through #10 – December 20, 2023

6	DOWNGRADIENT CCR MONITORING WELL
-	UPGRADIENT CCR MONITORING WELL
٠	NON-CCR WELL IN SHALLOW/INTERMEDIATE ZONES
357.26)	GROUNDWATER POTENTIOMETRIC SURFACE (FT AMSL)
360 —	GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR (C.I. = 5 FT)

PROJECT MONTICELLO STEAM ELECTRIC STATION MT PLEASANT, TEXAS

TITLE ASH SETTLING PONDS & ASH WATER RETENTION POND POTENTIOMETRIC SURFACE MAP MAY 2019

CONSULTANT

YYYY-MM-DD	2019-09-23
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

REFERENCE(S) BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 12/2/15. PROJECT NO. 19122449

TABLE D10-1 Statistical Analysis of Ground Water Data Comparison of Background to 2023 Downgradient Wells Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

		Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS
Well ID	Date Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
W-29	05/30/22	NS	NS	NS	NS	NS	NS	NS
W-29	12/17/22	4.43	122	82	0.339	6.60	790	1,370
W-30	05/30/22	4.04	112	43.8	0.70	5.61	682	1,090
W-30	12/03/22	4.60	119	45.4	0.813	5.58	636	1,030
W-34	05/30/22	5.61	220	108	0.29	6.30	918	1,800
W-34	12/17/22	5.67	216	122	0.19	6.38	973	1,600
W-35	05/30/22	5.26	232	115	<0.15	5.42	946	1,670
W-35	12/17/22	5.55	228	104	<0.15	5.60	942	1,520
Bac	kground Values:	8.52	311	182	2.10		1,193	2,160
	-				LPL:	5.27		
					UPL:	7.36		

Updated CCR Ground Water Background Evaluation Report

Bottom Ash Ponds

Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Prepared For:

Golden Eagle Development LLC

Prepared By:

Gemini Engineering LLC 2275 Cassens Drive, Suite 118 Fenton, Missouri 63026

December 19, 2023

TABLE OF CONTENTS

Table Of Contents	i
List of Common Acronyms	iii
1.0 Introduction	1
2.0 Initial Data Evaluation	2
2.1 Background Ground Water Analytical Data	2
2.2 Initial Data Analysis	2
2.3 Spatial Stationarity	3
2.4 Temporal Stationarity	4
2.5 Autocorrelation	5
2.6 Data Outliers	5
3.0 Background Value Evaluation	6
3.1 Prediction Limits	6
4.0 Certification Statement	8

List of Tables (Appendix B)

Table	Description
1	Background Ground Water Analytical Data
2	Summary of Detection Monitoring Analyses
3	Box Plot – Background Summary
4	ANOVA Analysis – Nonparametric K-W Test
5	Goodness of Fit Analyses
6	Trend Summary – Background
7	Von Neumann's Test – Background
8	Outlier Analysis - Background
9	Prediction Limit Calculation
10	Background Value Evaluation
11	Background Value Selection

List of Figures (Appendix A)

Figure	Title
1	Site Location Map
2	Detailed Site Map
3	Box Plots – All Parameters
4	Q-Q Plots – All Parameters
5	Time-Series Charts – All Parameters
6	Stats Analysis GW Data - Mann-Kendall

LIST OF COMMON ACRONYMS

ANOVA	Analysis of Variance
BAPs	Bottom Ash Ponds
CCR	Coal Combustion Residuals
Gemini	Gemini Engineering LLC
GWMP	Ground Water Monitoring Plan
K-W	Kruskal–Wallis Test
mg/L	milligrams per liter
MOSES	Monticello Steam Electric Station
QA/QC	Quality Control/Quality Assurance
SAP	Sampling Analysis Plan
Q-Q Plots	Quantile-Quantile Plots
RROS	Robust Regression Order Statistics
S.U.	Standard Units
TCEQ	Texas Council of Environmental Quality
TDS	Total Dissolved Solids
USEPA	U.S. Environmental Protection Agency

1.0 INTRODUCTION

On behalf of Golden Eagle Development, LLC (Golden Eagle), Gemini Engineering LLC (Gemini) has prepared this Updated Coal Combustion Residue (CCR) Ground Water Background Evaluation (30 TAC 352.281(b)) for the Bottom Ash Ponds (BAPs) at the Monticello Steam Electric Station (MOSES). This evaluation is an update to the background values previously provided, following the procedures detailed in the 2017 CCR Statistical Analysis Plan¹ (SAP) and 2017 Annual Groundwater Monitoring Report².

The MOSES CCR BAPs are currently in the Detection Monitoring Program. Luminant (the previous owner) collected the initial Detection Monitoring Program ground water samples from the BAPs CCR monitoring well network (see Figure 2 in Appendix A) in October 2015. Detection ground water samples have been collected from the CCR groundwater monitoring network on a semi-annual basis from 2015 through 2022, as required by the CCR Rule. All CCR ground water monitoring wells were sampled for Appendix III constituents during the detection monitoring sampling events. Closure by removal of the ash-settling ponds was completed in the Fall of 2022.

¹ Pastor, Behling & Wheeler, LLC, *CCR Combustion Residual Rule Statistical Analysis Plan* (SAP) *for Ash Ponds at the Monticello Steam Electric Station*, October 11, 2017. Website: <u>https://www.ccrsites.com/monticello</u>

² Pastor, Behling & Wheeler, LLC, 2017 Groundwater Monitoring Report for Ash Ponds at the Monticello Steam Electric Station, January 31, 2018. Website: <u>https://www.ccrsites.com/monticello</u>

2.0 INITIAL DATA EVALUATION

2.1 Background Ground Water Analytical Data

Table 1 (Appendix B) presents the analytical data used to perform the background calculations. The laboratory analytical sheets are in Appendix A of the 2017 Annual Ground Water Monitoring Report².

The column in Table 1 (Appendix B) titled "U-D-NE" identifies "U" – Upgradient (monitoring wells MW-31, MW-32, and MW-33), "D" – Downgradient (monitoring wells MW-29, MW-30, MW-34, and MW-35), and "NE" – Nature & Extent monitoring wells of which there are no current wells so designated. The table is organized with the upgradient wells presented first, followed by the downgradient wells in a simple numerical order (decreasing).

Eight (8) background ground water samples were collected on the following dates:

- 1. October 15, 2015
- 2. December 7, 2015
- 3. February 22, 2016
- 4. April 4, 2016
- 5. June 6, 2016
- 6. August 8, 2016
- 7. October 29, 2016
- 8. December 29, 2016

All parameters identified in 40 CFR Part 257 Appendix III are included in Table 1 (Appendix B) and were statistically analyzed.

2.2 Initial Data Analysis

The data was analyzed following the procedures outlined in the SAP¹. The data was first analyzed on how to handle duplicate data, non-detect data, and anomalous detections as described in Section 2 of the SAP¹. The data was processed to determine how many detections, non-detections, and any missing data existed for each monitoring well by parameter. No duplicate data was identified in the laboratory test results; therefore, no duplicate data was removed. Several J-flagged values were identified only for Fluoride. These J-flagged values were considered as detected concentrations per the SAP¹. Anomalous detections will be discussed as part of the spatial stationarity in Section 2.3. Table 2 (Appendix B) summarizes basic information on the background ground water data set. The parameters boron, calcium, chloride, pH, sulfate, and total dissolved solids (TDS)

had 100% detection rates (i.e., no non-detect data). Only fluoride had any non-detection data identified in the upgradient monitoring well MW-31, and the downgradient wells MW-29, MW-34, and MW-35.

Per the SAP¹, the upgradient monitoring well MW-31, and the downgradient monitoring wells MW-29, and MW-34 were required to utilize robust regression order statistics (RROS) to estimate many of the summary statistics used in the background statistical analysis. Non-parametric statistical approaches were used to evaluate the downgradient monitoring well MW-35.

The next step for the initial data analysis was to test for statistical independence validity which is described in Section 3 of the SAP¹. The four steps used to confirm validity were:

- 1. Spatial stationarity (Section 2.3) using side-by-side box plots and one-way analysis of variance (ANOVA) or Kruskal-Wallis (K-W) test to determine if spatial variability exists.
- 2. Temporal stationarity (Section 2.4) using time-series charts and Mann-Kendal or Thiel-Sen trend tests to determine if temporal stationarity exists.
- 3. Lack of autocorrelation (Section 2,5) using the von Neumann ratio test statistic only if the percent detection exceeds 50%.
- 4. Lack of statistical data outliers (Section 2.6) using the box plots from the spatial stationarity and Dixon's or Rosner's test.

2.3 Spatial Stationarity

To initiate the *Spatial Stationarity* evaluation, box plots were first generated to determine whether any spatial stationarity exists. Figure 3 (Appendix A) was developed to commence the spatial stationarity evaluation using box plots generated using ProUCL³. Due to the number of non-detects and J-values for fluoride, no further statistical analysis could be conducted for spatial stationary for fluoride.

The box plots generated by ProUCL³ represent five-point summary graphs as follows:

- Q1 equals the 25th percentile, Q2 equals the 50th (median), and Q3 equals the 75th percentile.
- The interquartile range (IQR) equals Q3-Q1 (the height of the box in a box plot).
- The lower whisker starts at Q1, and the upper whisker starts at Q3.

³ U.S. Environmental Protection Agency, *Statistical Software ProUCL 5.2 for Environmental Applications for Data Sets with and without Nondetect Observations*, June 14, 2022. Website: <u>https://www.epa.gov/land-research/proucl-software</u>

- The lower whisker extends up to the lowest observation or (Q1 1.5 * IQR) whichever is higher.
- The upper whisker extends up to the highest observation or (Q3 + 1.5 * IQR) whichever is lower.
- The horizontal bars (also known as fences) are drawn at the end of the whiskers.
- Observations that lie outside the fences (above the upper bar and below the lower bar) represent potential outliers.

The box plots indicate that spatial stationarity exists between the upgradient and downgradient wells (see Table 3 in Appendix B for a summary).

In addition to the box plots, Quantile-Quantile (Q-Q) plots were generated using $ProUCL^3$ to evaluate the validity of the box plot results. Figure 4 (Appendix A) presents the results of the Q-Q plots. The Q-Q plots generally reinforce the visual interpretation of the box plots (see Figure 3 in Appendix A and Table 3 in Appendix B).

To further evaluate *Spatial Stationarity*, a one-way ANOVA analysis (the non-parametric K-W test) was conducted using ProUCL³. See Table 4 (Appendix B) for the results of the analysis on all parameters except Fluoride. The analyses indicate that for all parameters, there exists a statistical difference in the mean/median characteristics between the upgradient and downgradient wells during the background sampling events.

2.4 Temporal Stationarity

To initiate the *Temporal Stationarity* evaluation, time-series charts were prepared. Figure 5 (Appendix A) presents the time-series chart by parameter (alphabetical) and subdivided by monitoring well (numerical). These time-series charts were generated in EXCEL⁴. The time-series charts range from the initial background sample date (10/15/15) to the last 2022 sample date (12/17/22). See the column titled "*Visual Trend from Time-Series Graphs*" in Table 2 (Appendix B) for comments on the visual evaluation of the time-series charts.

Mann-Kendall or Thiel-Sen trend analysis was then performed based on the distribution (normal, gamma-distributed, log-normal, or non-parametric) of the background data (see the columns titled "*Mann-Kendal Trend Analysis*" and "*Thiel-Sen Trend Analysis*" in Table 2, Appendix B). The Mann-Kendal charts are included as Figure 6, Appendix A. The distribution (Goodness of Fit statistical method) of the background data was determined

⁴ Microsoft Corporation, *Microsoft Excel*, Retrieved from <u>https://office.microsoft.com/excel</u>.

using the software program EnvStats⁵ under the RStudio⁶ graphic user interface (see Table 5 in Appendix B). Table 6 (Appendix B) summarizes the goodness of fit analyses for each well and parameter.

Based upon the analyses conducted, no evidence of statistically increasing or decreasing trends was readily identified as a Temporal Stationarity for the background data sets.

2.5 Autocorrelation

To evaluate the *Lack of Auto Correlation*, EnvStats⁵ was used to determine whether any autocorrelation relationship was present in the background data using Von Neumann's rank test. Table 7 (Appendix B) summarizes the results from von Neumann's rank test using EnvStats⁵.

Based upon the comparison of the P-value to the alpha significance value (1-Confidence Level) of 0.05, no parameters exhibited any autocorrelation indicating that sampling has been conducted with sufficient time between sampling events, that the sampling events do not sample from the same volume of ground water as the previous samples.

2.6 Data Outliers

To evaluate the presence of a lack of *Statistical Outliers*, ProUCL³ was used to analyze all the parameters except for Fluoride using both Rosner's and Dixon's tests, box plots (see Figure 3 in Appendix A) and Q-Q plots (see Figure 4 in Appendix A) for selected parameters. The analysis of the data using Dixon's test was borderline as the sample size was 24 rather than the generally accepted value of 25 or more. Table 8, Appendix B presents the analysis for outliers. Although several data points were identified as outliers, based upon the data check to confirm if conditions could be identified that would have resulted in outliers being so designated, no conditions were identified. Therefore, all data points identified in Table 8 are not considered outliers and these data points were left in all statistical analyses.

⁵ Millard, Steven, EnvStats – *An R Package for Environmental Statistics*, 2013. Website: <u>https://cran.r-project.org/web/packages/EnvStats/index.html</u>

⁶ Posit, RStudio, October 17, 2023. Website: <u>https://posit.co/download/rstudio-desktop/</u>

3.0 BACKGROUND VALUE EVALUATION

After completion of the statistical analyses discussed in Section 2 above and following the directives in the SAP¹, the background data was determined to be acceptable for use in calculating prediction limits. Fluoride results were modified following the SAP¹ by substituting ½ of the Reporting limits for all non-detect results.

3.1 Prediction Limits

Per the SAP¹, prediction limits were calculated for use in determining whether any ground water monitoring results beyond the background sampling events would result in a Statistically Significant Increase (SSI). To calculate the prediction limits, EnvStats⁴ was used to calculate these limits. Variables used to calculate the prediction limits included the following:

- Distribution of the data
- Sample size
- Prediction interval method and type
- Calculated confidence level as shown on page 19-8 of the Unified Guidance document⁷.

Table 9 (Appendix B) presents the prediction limits calculated for each parameter. The below table presents a summary of the calculated prediction limits.

	Calculated
Parameter	Prediction Limits
Boron (mg/L)	8.52
Calcium (mg/L)	311
Chloride (mg/L)	182
Fluoride (mg/L)	2.10
pH (field) (s.u.)	5.27-7.36
Sulfate (SO4) (mg/L)	1,193
Total Dissolved Solids (TDS) (mg/L)	2,160

The SAP¹ states that in determining the background value one is to utilize the higher of the Upper Prediction Limit and the reporting limit except for the parameter pH which uses both

⁷ U.S. Environmental Protection Agency, *Unified Guidance: Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities*, March 2009 (commonly called the Unified Guidance document).

the Lower and Upper Prediction Limits. Table 10 (Appendix A) summarizes the reporting limit, the prediction limits and what is the selected background value for each parameter based upon the directives in the SAP¹. Table 11 (Appendix A) presents additional information that assisted in the evaluation of the background values.

The SAP¹ requires that for each round of sampling conducted after the background sampling events (commonly referred to as post-background sampling events), each result is to be compared to the background value to determine if an SSI has occurred.

As detection monitoring continues, the SAP¹ recommends determining whether to update background data sets periodically with valid monitoring concentrations that are representative of ground water unimpacted by leakage from the CCR unit. The Unified Guidance document⁷ recommends reviewing and potentially updating background values when enough new concentrations have been collected to perform statistical comparisons. Background values should be reviewed about every two- or three years during ground water monitoring.

Per the SAP¹, after every detection monitoring event, the constituent concentrations from each downgradient point of compliance monitoring well are compared to the background values (see Table 10 in Appendix B) to ascertain if an SSI above background does or does not exist. Possible outcomes from comparing the detection monitoring constituent concentrations in each downgradient monitoring well to their respective background values are as follows:

- All detection monitoring constituent concentrations in a downgradient compliance well are less than or equal to their respective background values; or
- One or more detection monitoring constituent concentrations in a downgradient compliance well are above their respective background values.

Should any point of compliance monitoring well concentrations from the current sampling event exceed their respective background value, that monitoring well from which the exceedance occurred is to be resampled for that parameter only as described in the SAP¹. If the resample indicates that the target detection monitoring constituent concentration(s) in the monitoring well or wells is less than or equal to their respective background value(s), then it can be concluded that an SSI over background for all detection monitoring constituents does not exist, since concentrations in one (1) sample of the two (2) independent samples do not exceed the appropriate background value(s).

4.0 CERTIFICATION STATEMENT

This ground water background re-evaluation report, and all attachments were prepared by Gemini Engineering LLC under my direction and supervision. This report meets the requirements of 30 TAC 352.281(b) and has been prepared in a manner consistent with recognized and generally accepted good engineering practices.

Chan J. Kaiser

Adam J. Kaiser, PE Senior Project Engineer Gemini Engineering, LLC Texas PE No 126387, Expires 3/31/2024 Texas Engineering Firm F-23183

12/20/2023

APPENDIX A Figures and Tables

FIGURE 3 Statistical Analysis of Ground Water Data Box Plots – All Parameters Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Creation Date: 11/22/23

FIGURE 3 Statistical Analysis of Ground Water Data Box Plots – All Parameters Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Boron Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Boron Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Boron Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Boron Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Calcium Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Calcium Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Calcium Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Calcium Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Chloride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

W-30

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Chloride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 **Statistical Analysis of Ground Water Data Time Series Chart - Chloride Former Monticello Steam Electric Station** Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Chloride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Fluoride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

W-30

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Fluoride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

W-32

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Fluoride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

10/01/15 04/01/16 10/01/16 04/01/17 10/01/17 04/01/18 10/01/18 04/01/19 10/01/19 04/01/20 10/01/20 04/01/21 10/01/21 04/01/22 10/01/22 Sample Date

1

0

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Fluoride Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - pH Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - pH Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - pH Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - pH Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Sulfate Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Sulfate Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Sulfate Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - Sulfate Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - TDS Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - TDS Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - TDS Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 4 Statistical Analysis of Ground Water Data Time Series Chart - TDS Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

FIGURE 5 Statistical Analysis of Ground Water Data Q-Q Plots – All Parameters Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

luation Date:								
acility Name	9-Nov-22				Job ID Constituent	Bkgd-Ug		
onducted Bv:	KRO				Concentration Units	mg/L		
Same	ling Point ID.	W-31	W-32	W-33				
Sampling	Sampling		- <u>52</u>					
Event	Date			CALCIU	M CONCENTRATI	ON (mg/L)		
1	10/15/15	130.00	282.00	311.00	<u> </u>	-		
3	12/0//15	136.00	260.00	252.00	-	-		
4	04/04/16	119.00	239.00	278.00	1	1		
5	06/06/16	104.00	192.00	229.00				
6	08/08/16	92.40	261.00	215.00				
7	10/12/16	71.70	284.00	237.00				
8	12/29/16	89.70	310.00	275.00				
9 10	├		╂────┤		+			
11			┨────┤		1	1		
12					1			
13								
14			ļ					
15			<u> </u>					
17	┨────┤─		╂────┦		+	+		
18	<u> </u>		┨────┤		1			
19			<u> </u>		1	1		
20								
Coefficien	t of Variation:	0.21	0.14	0.12				
Mann-Kendal	I Statistic (S):	-23		-10				
Contra		<u>99.9%</u>	No Trend					
Concen	tration (rend:	Decreasing	No frend	Stable				
	1000 -							
								→ W-31
	f					A		— W-32
	/6							
	E ¹⁰⁰	· ·		•				
	<u> </u>							
	<u>.</u>							
	tat							
	1 ¹⁰							
	9							
	5							
	ŭ 1	I	I	I	I	<u> </u>		
	00/45	10/15 40/	15 01/16 02/4	6 05/16 06/4	6 08/16 10/4	6 11/16 01/4	7 02/17	
	09/15	10/13 12/	10 01/10 03/10	00/10 00/1	00/10 10/10	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	03/11	
				Sampling	J Date			
es:								
east four inde	ependent sampli	ng events per we	Il are required for ca	alculating the trend	. Methodology is va	alid for 4 to 40 san	nples.	
fidence in Tr	end = Confiden	ce (in percent) th	at constituent concer	ntration is increasi	ig (S>0) or decreas	sing (S<0): >95%	= Increasing or De	ecreasing;
)% = Probab	ly Increasing or	Probably Decrea	sing; < 90% and S>	0 = No Trend; < 9)%, S≤0, and COV	≥ 1 = No Trend; <	< 90% and COV <	< 1 = Stable.
nodology bas	sed on "MAROS	: A Decision Sup	port System for Opti	Imizing Monitoring	Plans", J.J. Aziz, M	I. Ling, H.S. Rifai,	C.J. Newell, and J	J.R. Gonzales,

party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

GSI Environmental Inc., www.gsi-net.com

this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

<pre>reactify Name: (MCSES conducted By: (KRO Sampling Point ID: W-31 W-32 W-33 Sampling Point ID: W-31 W-32 W-34 Sampling Point ID: W-31 W-34 Sampling Point ID: W-34 W-34 W-34 W-34 W-34 Sampling Point ID: W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34 W-34</pre>	aluation Date:	9-Nov-22				Job ID:	Bkgd-Ug		
Simpling Point ID: W-31 W-32 W-33 Sampling Data Point Sampling Point ID: W-31 W-33 Sampling Data Point Sampling Orderessing (S-0) references (S-0) worder setting or Decreasing Point Parameters (S-0) worder setting (S-0) w	Facility Name:	MOSES KRO			C.	Constituent: ncentration Unite:	Sultate		
Sampling bate with the set of	Conducted By.	ling Point ID.	W-24	W. 22	W-22	noemaalon onits.	ing/L		
The end of the state of th	Sampling	Sampling	VV-31	W-32	W-33				
$\frac{1}{2} = \frac{1}{12}(7)715 + \frac{1}{12}(808.00 + \frac{1}{10400} + \frac{1}{180.00} + \frac{1}{180.00} + \frac{1}{12}(10.00 + \frac{1}{12}) + \frac{1}{12}(10.$	Event	Date			SULFATE	CONCENTRATIO	DN (mg/L)		
$\frac{2}{3} = \frac{1207/15}{022716} = \frac{714.00}{54.00} = \frac{852.00}{852.00} = \frac{1}{720.00} = \frac{1}{720.$	1	10/15/15	808.00	1040.00	1080.00				
$\frac{1}{4} = \frac{1}{12} $	<u></u>	12/0//15	/14.00	8/2.00	853.00				
$\frac{1}{9} = \frac{1}{10} $	4	02/22/16	737.00	850.00	935.00				
6 08/08/16 396.00 945.00 655.00 7 10/12/16 292.00 986.00 797.00 9 12/29/16 729.00 1210.00 965.00 9 12/29/16 729.00 1210.00 965.00 10 11 11 11 11 13 11 11 11 11 13 12 11 11 11 11 13 12 11 11 11 11 11 13 14 15 11 11 11 11 14 15 11	5	06/06/16	701.00	694.00	700.00		1		
7 10/12/16 292.00 986.00 797.00 8 12/29/16 723.00 1210.00 965.00 90 11 12/29/16 723.00 1210.00 965.00 11 12/29/16 723.00 1210.00 965.00 10 10 11 12 10 10 10 10 10 10 12 10 10 10 10 10 10 10 13 14 10 10 10 10 10 10 13 14 10 10 10 10 10 10 10 14 15 10 12 4 -6 10	6	08/08/16	396.00	945.00	655.00				
b b b c	7	10/12/16	292.00	986.00	797.00				
bill of the second 	8	12/29/16	729.00	1210.00	965.00				
bit 10 10 10 10 10 10 10 13 14 10 10 10 10 10 10 15 15 10 10 10 10 10 10 10 16 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 1	9								
12 1 1 1 13 1 1 1 1 14 15 1 1 1 16 1 1 1 1 1 18 1 1 1 1 1 1 19 1 1 1 1 1 1 1 19 1	10			1				-	
13 13 14 14 15 16 15 16 17 17 18 19 20 0.17 0.17 18 91.1% 64.0% 72.6% 91.1% 64.0% Confidence Factor 91.1% 64.0% Concentration Trend: Prob. Decreasing No Trend Stable 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000	12	<u>├</u>						-	
14 14 <td< td=""><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	13								
15	14								
16 0	15								
if Image: Confidence of Variation: 0.29 0.17 0.17 20 Coefficient of Variation: 0.29 0.17 0.17 Man-Kendall Statistic (5): 1.2 4 -6 91.1% 64.0% 72.5% 0.17 Confidence Factor: 91.1% 64.0% 72.5% Concentration Trend: Prob. Decreasing No Trend Stable Optimized and the stable Optintion the stable	16								
10 0 10 0 20 0.17 0.17 Coefficient of Variation: -12 4 -6 Mann-Kendall Statistic (S): -11% 64.0% 72.6% Concentration Trend: Prob. Decreasing No Trend Stable One of the state	17	├			├				
20 Coefficient of Variation: Mann-Kendall Statistic (S): -12 4 -6 Confidence Factor: 0.17 0.17 -12 4 -6 Confidence Factor: 0.1% 64.0% 72.6% Concentration Trend: Prob. Decreasing No Trend Stable 0 0 0 0 0 0 0 0 0 0 0 0 0	19	<u>├</u>						-	
Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Prob. Decreasing No Trend Stable 10^{0} $10^{$	20								
Mann-Kendall Statistic (5): Confidence Factor: Concentration Trend: Prob. Decreasing No Trend Stable	Coefficient	t of Variation:	0.29	0.17	0.17				
Concentration Trend: Prob. Decreasing No Trend Stable 0000 000 000 000 000 000 000	Mann-Kendal	Statistic (S):	-12	4	-6				
Concentration Trend: Prob. Decreasing No Trend Stable	Confid	dence Factor:	91.1%	64.0%	72.6%				
binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding binding	Concent	tration Trend: P	rob. Decreasing	No Irend	Stable				
besi Note that the second s		10000 -							
besis The set four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples</i> . Probably Increasing or Probably Decreasing: < 90% and S20 = No Trend: < 90% S0 and COV < 1 = Stable		10000							← W-31
b b c c c c c c c c									
$\frac{1}{100} + \frac{1}{100} + \frac{1}$		1000 -	<u> </u>			-			
$\int_{0}^{100} \int_{100}^{100} \int_$		Su l	· · · · · · · · · · · · · · · · · · ·			-		_	
$\int_{0}^{100} \int_{10}^{100} \int_{1$		-					-		
$\frac{10}{1000} = \frac{10}{1000} = \frac{1000}{1000} = $		b 100 -							
$\frac{1}{100} = \frac{1}{100} = \frac{1}$		ati							
b 10 1		it.							
object 09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing: < 90% and S>0 = No Trend: < 90% Son and COV < 1 = Stable		b 10 -							
B 1		2							
09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 0% = Probably Increasing or Probably Decreasing: < 90% and S>0 = No Trend: < 90% S0 and COV > 1 = No Trend: < 90% and COV > 1 = Stable		8							
09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date Dtes: least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing: < 90% and S>0 = No Trend: < 90% SS0 and COV > 1 = No Trend: < 90% and COV > 1 = Stable		U 1 +-	+ +	+ +	+ +		+ +		
Sampling Date otes: : least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; op(% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90% S<0, and COV > 1 = No Trend; < 90% and COV > 1 = Stable		09/15	10/15 12/1	15 01/16 03/10	6 05/16 06/16	08/16 10/16	11/16 01/1	17 03/17	
otes: t least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples</i> . onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing: < 90% and S>0 = No Trend: < 90% S<0, and COV > 1 = No Trend: < 90% and COV > 1 = Stable					Sampling	Date			
otes: t least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples</i> . onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90% S<0, and COV > 1 = No Trend; < 90% and COV < 1 = Stable									
least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90% S<0, and COV > 1 = No Trend; < 90% and COV > 1 = Stable	otes:								
onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90% S<0, and COV > 1 = No Trend; < 90% and COV > 1 = Stable	t least four inde	pendent sampli	ng events per we	ell are required for ca	alculating the trend.	Methodology is va	lid for 4 to 40 san	nples.	
90% = Probably Increasing or Probably Decreasing < 90% and S>0 = No Trend < 90% S<0 and COV > 1 = No Trend < 90% and COV < 1 = Stable	onfidence in Tr	end = Confiden	ce (in percent) the	at constituent conce	ntration is increasing	(S>0) or decreasi	ng (S<0): >95%	= Increasing or Dec	creasing;
	90% = Probabl	y Increasing or	Probably Decrea	sing; < 90% and S>	>0 = No Trend; < 90%	o, S≤0, and COV	≥ 1 = No Trend; <	< 90% and COV <	1 = Stable.
ethodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,		sed on "MAROS	: A Decision Sup	port System for Opt	imizing Monitoring Pl	ans", J.J. Aziz, M.	Ling, H.S. Rifai,	C.J. Newell, and J.	R. Gonzales,

party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

Evaluation Date: 9- Facility Name: M Conducted By: KF Sampling Event S 1 1 2 1	Nov-22 OSES RO g Point ID:	W-31	for Con	stituent Tre	nd Analysi Job ID: Constituent:	Bkgd-Ug TDS		
Evaluation Date: 9- Facility Name: Mo Conducted By: Kr Sampling Event S 1 1 2 1	Nov-22 OSES RO g Point ID:	W-31		Cc	Job ID: Constituent:	Bkgd-Ug TDS		
Facility Name: M Conducted By: K Sampling Event 1 1 2 1	OSES RO g Point ID:	W-31		Co	Constituent:	TDS		
Conducted By: KF Sampling Event 1 1 2 1 3 0	RO g Point ID: Sampling	W-31		Co				
Sampling Sampling S Event 1 2 1 3 0	g Point ID:	W-31			oncentration Units:	mg/L		
Sampling Event 1 1 2 1	Sampling		W-32	W-33				
1 1 2 1 3 0	Date			TDS C	ONCENTRATION	(mg/L)		
2 1	0/15/15	1510.00	1970.00	1630.00			1	
3 0	2/07/15	1250.00	1610.00	1680.00				
3 0	2/22/16	1500.00	1870.00	1960.00				
4 0	4/04/16	1220.00	1380.00	1540.00				
6 0	8/08/16	862.00	1650.00	1300.00				
7 1	0/12/16	654.00	1820.00	1540.00				
8 1	2/29/16	1150.00	1950.00	1730.00				
9								
11								
12								
13								
14								
15								
10								
18								
19								
20	Martin	0.05	0.40	0.40				
Coefficient of Mann-Kendall St	variation:	-21	0.13	0.12				
Confiden	ce Factor:	99.6%	54.8%	68.3%				
Concentrati	ion Trend:	Decreasing	No Trend	Stable				
		Jeeneng						
	10000 -							
								₩-31
Î								-W-32
g/l	1000 -							
Ē								
Ľ Ľ	100							
ii	100 -							
rat								
nti	10 -							
ce								
uo								
Ŭ	1							
	09/15	5 10/15 12/1	5 01/16 03/16	6 05/16 06/16	08/16 10/16	11/16 01/	17 03/17	
				Samulina	Data			
				Sampling	Dale			

valuation Date:	9-Nov-22				Job ID:	Bkgd-Dg		
Facility Name:	MOSES				Constituent:	Calcium		
Conducted By:	KRO				Concentration Units:	mg/L		
Samp	ling Point ID:	W-29	W-30	W-34	W-35			
Sampling Event	Sampling Date			CALCIU	M CONCENTRATIC	N (mg/L)		
1	10/15/15	111.00	133.00	124.00	175.00			
2	12/07/15	86.60	135.00	153.00	177.00			
3	02/22/16	114.00	138.00	117.00	160.00			
4	04/04/16	169.00	141.00	86.90	169.00			
5	06/06/16	162.00	132.00	66.20	158.00			
6 7	08/08/16	153.00	136.00	121.00	159.00			
<i>i</i> 8	10/12/16	1/4.00	102.00	110.00	150.00			
9	12/29/16	185.00	192.00	158.00	151.00			
10					1			
11								
12								
13								
14								
15								
16								
17								
19								
20								
Coefficient	t of Variation:	0.25	0.14	0.26	0.06			
Mann-Kendal	Statistic (S):	20	4	-2	-20			
Confic	dence Factor:	99.3%	64.0%	54.8%	99.3%			
Concent	ration Trend:	Increasing	No Trend	Stable	Decreasing			
:	1000 (mg/L)	i			× i			W-29 W-30 W-34 W-35
	10	i i 5 10/15 12/1	5 01/16 03/16	5 05/16 06/1 Sampling	6 08/16 10/16	11/16 01/17	03/17	

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

			GSI MANI for Cons	N-KENDA	LL TOOI	LKIT is		
Evaluation Date: Facility Name: Conducted By:	9-Nov-22 MOSES KRO			с	Job ID Constituent oncentration Units	: Bkgd-Dg : Chloride : mg/L		
Samp	ling Point ID:	W-29	W-30	W-34	W-35			
Sampling	Sampling			CHI ORID	E CONCENTRAT	ION (mg/L)		
Event	Date	101.00	106.00	07.10	08.20	ion (iiig/L)	1	-
2	10/15/15	81 10	98 30	87.10	98.20			
3	02/22/16	82.30	96.30	85.90	85.40			
4	04/04/16	75.90	95.20	80.70	91.30			
5	06/06/16	85.50	94.90	73.00	98.50			
7	08/08/16	82.60	85./U 79.90	98.40 84 00	97.80			
8	12/29/16	82.50	85.30	122.00	110.00	1	1	1
9			33.30					
10								
11							-	
13						1	+	+
14						1	1	1
15								
16								
17								
18								
20								
Coefficient	t of Variation:	0.09	0.09	0.17	0.08			
Mann-Kendal	Statistic (S):	2	-26	4	11			
Confi	dence Factor:	54.8%	100.0%	64.0%	88.7%			
Concent	tration Trend:	No Trend	Decreasing	No Trend	No Trend			
	1000 (J) (mg/L) 100							₩-29 ₩-30 ₩-34 ₩-35
	00 Concentratio	I I 10/15 12/1	1 1 15 01/16 03/16	05/16 06/16 Sampling	1 1 08/16 10/16 Date	i i 5 11/16 01/17	· 03/17	
				Camping				
Notes: At least four inde Confidence in Tr 2 90% = Probable Methodology bas <i>Ground Water</i> , 4	ependent sampli end = Confident ly Increasing or sed on "MAROS 11(3):355-367, 2	ing events per we ce (in percent) the Probably Decrea S: A Decision Sup 2003.	Il are required for cal at constituent concen sing; < 90% and S>0 port System for Optim	Iculating the trend. tration is increasing 0 = No Trend; < 90 mizing Monitoring F	Methodology is va g (S>0) or decreas %, S≤0, and COV Plans", J.J. Aziz, M	alid for 4 to 40 sam ing (S<0): >95% = ≥ 1 = No Trend; < . Ling, H.S. Rifai, C	oles. Increasing or Dec 90% and COV < 1 5.J. Newell, and J.F	reasing; I = Stable. R. Gonzales,
mitation GSI Environmentation GSI Environmentation and the second	ironmental Inc., n e for any direct, ir subject to change	nakes any represen nakes any represen ndirect, consequen e without notice. G	anable as is . Consider ntation or warranty rega tial, incidental or other SI Environmental Inc.,	able care has been (arding the accuracy, (damages resulting fro disclaims any respon Environmental loc, www.	correctness, or comp or the use of this pr sibility or obligation is a signate com	ing units software product oleteness of the inform oduct or the informat to update the informat	nation contained her nation contained her ion contained herein tion contained herei	y, including without ein, and no such . Information in n.

cility Name:	MOSES				Job II Constituen): Bkgd-Dg t: Fluoride		
nducted By:	KRO] c	oncentration Units	s: <mark>mg/L</mark>		
Samp	ling Point ID:	W-29	W-30	W-34	W-35			
ampling Event	Sampling Date			FLUORID	E CONCENTRAT	TON (mg/L)		
1	10/15/15	0.32	0.58	0.38	0.10			
2	12/07/15	0.36	0.81	0.49	0.13			
3	02/22/16	0.24	0.72	0.42	0.10			
4	04/04/16	0.23	0.96	0.29	0.10			
6	08/08/16	0.05	0.50	0.05	0.10			
7	10/12/16	0.40	0.79	0.29	0.10			
8	12/29/16	0.23	0.50	0.34	0.10			
9								
10								
11								
12								
14								
15								
16								
17								
18								
20								
Coefficient	of Variation:	0.55	0.32	0.56	0.10			
lann-Kendall	Statistic (S):	-8	-4	-9	-5			
Confic	lence Factor:	80.1%	64.0%	83.2%	68.3%			
Concent	ration Trend:	Stable	Stable	Stable	Stable			
	1 -	-						
								➡ W-29
	<u>ר</u>				,			
-	6							→ W-34
	E -				/			₩-35
		X						
	<u>♀ 0.1</u>		X	XX	×	X		
	at							
•				-	-		_	
	e e							
	ů l							
(5 aa			<u> </u>		<u> </u>		
	- 0.01 +	10/15 12/1	5 01/16 02/1	6 05/46 06/46	09/46 40/4	6 11/16 01/1	7 02/47	
	09/15	10/15 12/1	5 01/10 03/1	0 03/10 00/10	00/10 10/1	0 11/10 01/1	03/11	
				Sampling	Date			
s:								
ast four inde	pendent sampli	ng events per we	I are required for ca	alculating the trend.	Methodology is v	ralid for 4 to 40 san	nples.	
				ntration in ingragoin	a(S>0) or degree	$sing (S_{<0}) + S_{0} = 0.5\%$	- Increasing or Do	orocoina

GSI Environmental Inc., www.gsi-net.com

valuation Date	9-Nov-22				Job ID:	Bkgd-Dg		
Facility Name Conducted By	MOSES KRO				Constituent: Concentration Units:	Sulfate mg/L		
Sam	pling Point ID:	W-29	W-30	W-34	W-35			
Sampling	Sampling			SULFA	TE CONCENTRATIO	ON (ma/L)		
Event	Date 10/15/15	861.00	919.00	453.00	893.00	· (3· /	T	
2	12/07/15	501.00	875.00	671.00	861.00			
3	02/22/16	909.00	873.00	641.00	824.00			
4	04/04/16	465.00	925.00	378.00	835.00			
5 6	08/09/16	696.00	848.00	545.00	810.00	+	+	
7	10/12/16	1140.00	817 00	556.00	793.00	1	1	
8	12/29/16	1150.00	863.00	937.00	839.00	1	1	
9			000.00	227.00	0.97.00	1	1	
10								
11	\downarrow \downarrow							
12	+							
13	 						1	
15	<u>† † </u> †		1 1			1	1	1
16						1	1	
17								
18	\downarrow \downarrow							
19	╂───┼							
Coefficier	t of Variation:	0.32	0.04	0.33	0.04			
Mann-Kenda	Il Statistic (S):	16	-14	2	-14			
Conf	dence Factor:	96.9%	94.6%	54.8%	94.6%			
Concer	tration Trend:	Increasing	Prob. Decreasing	No Trend	Prob. Decreasing			
	10000							-W-29
								W 20
								W 30
	D							VV-34
	5	-						W-35
	S 100							
	ti							
	tra							
	G 10 -							
	ğ							
	ō							
	7 3		 					
	0 1+	10/15 12	2/15 01/16 03/16	05/16 06/	16 08/16 10/16	11/16 01/17	03/17	
	09/15			Samplin	a Data			
	0 1 +			Samplin	y Date			
	0 1 +							
otes:	0 1 +							
otes: least four ind	0 1 +	ing events per v	vell are required for ca	lculating the trend	d. Methodology is va	alid for 4 to 40 samp	les.	
otes: t least four ind	ependent sampl rend = Confiden	ing events per v ce (in percent) t	vell are required for ca hat constituent concer	Iculating the trend tration is increas	d. <i>Methodology is va</i> ing (S>0) or decreasi	alid for 4 to 40 samp ing (S<0): >95% =	les. Increasing or Dec	creasing;
Ites: least four ind infidence in T 30% = Probat	ependent sampl rend = Confiden	ing events per v ce (in percent) t Probably Decre	vell are required for ca hat constituent concen easing; < 90% and S>	Iculating the trend tration is increas 0 = No Trend; < \$	d. <i>Methodology is va</i> ing (S>0) or decreasi 00%, S≤0, and COV	alid for 4 to 40 samp ing (S<0): >95% = ≥ 1 = No Trend; < \$	lles. Increasing or Dec 30% and COV <	creasing; 1 = Stable.
tes: least four ind infidence in T 30% = Probat ≥thodology ba	ependent sampl rend = Confiden bly Increasing or sed on "MAROS	ing events per v ce (in percent) t Probably Decre S: A Decision Su	vell are required for ca hat constituent concer asing; < 90% and S> upport System for Opti	Iculating the trend tration is increas 0 = No Trend; < 9 mizing Monitoring	d. <i>Methodology is va</i> ing (S>0) or decreasi 00%, S≤0, and COV J Plans", J.J. Aziz, M.	alid for 4 to 40 samp ing (S<0): >95% = ≥ 1 = No Trend; < 9 . Ling, H.S. Rifai, C	les. Increasing or Dec 00% and COV < .J. Newell, and J.	creasing; 1 = Stable. R. Gonzales,

party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

Sampling Point ID: W-29 W-30 W-34 W-35 Sampling Point ID: W-29 W-30 W-34 W-35 Event Sampling Point ID: W-29 W-30 W-34 W-35 Event Sampling Point ID: W-29 W-30 W-34 W-35 2 1/207/15/15 1180.00 1590.00 1580.00 1580.00 3 0/22/16 1840.00 1570.00 1580.00 1 4 0/40/4/6 850.00 1460.00 817.00 1310.00 6 0/60/6/6 1/22.00 1300.00 1/320.00 1/420.00 7 10/12/16 1/22.00 1300.00 1/320.00 1/420.00 11 1 1 1 1/2 1/2 1/2 13 1/2/2/16 1860.00 1/510.00 1/620.00 1/370.00 1/40.00 11 1 1/2 1/2 5 4 -1/4 1/2 13 1/2 5	aluation Date: Facility Name	9-Nov-22 MOSES				Job ID: Constituent	Bkgd-Dg TDS		
Sampling Point ID: W-29 W-30 W-34 W-35 Sampling Sampling TDS CONCENTRATION (mg/L) TDS CONCENTRATION (mg/L) 1 10/15/15 1680.00 1490.00 878.00 1720.00 3 0/2/2/16 1480.00 1750.00 1550.00 1560.00 4 04/4/16 850.00 1460.00 877.00 1310.00 5 06/06/16 1230.00 1550.00 1360.00 1470.00 6 08/08/16 1850.00 1550.00 1320.00 1470.00 7 10/12/16 1220.00 1500.00 1570.00 1460.00 170.00 8 12/29/16 1860.00 1510.00 1620.00 1370.00 1470.00 10 10 160 1770.00 1770.00 1770.00 1770.00 6 08/08/16 1860.00 1510.00 1620.00 1370.00 1470.00 10 11 10 10 1620.00 1370.00 1490.00	Conducted By:	KRO				Concentration Units:	mg/L		
Sampling Sampling Sampling Disconcentration (mg/L) 1 10215/15 1680.00 1490.00 878.00 1720.00 3 0.2022/16 1480.00 1500.00 1500.00 1650.00 4 0.4/04/16 850.00 1460.00 817.00 1510.00 1650.00 5 0.6/06/16 1250.00 1460.00 817.00 1310.00 1650.00 5 0.6/06/16 1250.00 1500.00 1370.00 1400.00 1370.00 6 0.6/06/16 1250.00 1500.00 1370.00 1470.00 1370.00 6 0.6/06/16 1250.00 1510.00 1520.00 1370.00 1470.00 7 1072/16 126.00 1510.00 1520.00 1370.00 1370.00 111 12 136.00 1510.00 1520.00 1570.00 1570.00 Confidence Factor Confidence Factor Confidence Factor 11.1% 63.3% 64.0% 94.6% 94.6% 94.6% 94.6% 94.6% 94.6% 94.6% 94.6% 94.6% 94.6%	Sam	oling Point ID:	W-29	W-30	W-34	W-35			
$\frac{1}{2} \frac{1}{10/15/15} \frac{1}{1680.00} \frac{1490.00}{150.00} \frac{878.00}{1500.00} \frac{1720.00}{1580.00} \frac{1}{1} \\ \frac{3}{2} \frac{1}{12/07/15} \frac{1}{10/100} \frac{1}{150.00} \frac{1}{100.00} \frac{1}{100.0$	Sampling Event	Sampling Date			TDS	CONCENTRATION ((mg/L)		
2 3 4 4 4 4 4 4 4 4	1	10/15/15	1680.00	1490.00	878.00	1720.00			
3 0.2/22/16 1340.00 179.000 1570.00 1650.00 4 0.4/04/16 1350.00 1460.00 295.00 1460.00 5 0.6/06/16 1230.00 1460.00 195.00 1460.00 7 10/12/16 120.00 1350.00 1470.00 1370.00 1470.00 9 12/29/16 1360.00 1510.00 1620.00 1370.00 1470.00 10 111 112 114 114 114 114 114 112 113 114 114 114 114 114 114 113 114 114 114 114 114 115 114 114 114 115 114 114 115 114 116 114 116 114 116 117.00 116 117.00 116 117.00 116 117.00 116 117.00 116 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 117.00 <	2	12/07/15	1020.00	1530.00	1500.00	1580.00			
	3	02/22/16	1840.00	1790.00	1570.00	1650.00			
$\frac{3}{6} = \frac{10010/16}{12300} + \frac{12300}{15000} + \frac{146000}{155000} + \frac{12300}{123000} + \frac{146000}{123000} + \frac{146000}{12000} $	4	04/04/16	850.00	1460.00	817.00	1310.00			
7 10012/16 1720.00 1300.00 935.00 1320.00 8 12/29/16 1860.00 1510.00 1620.00 1370.00 9 12/29/16 1860.00 1510.00 1620.00 1370.00 9 12/29/16 1860.00 1510.00 1620.00 1370.00 11 14 14 14 14 14 12 13 14 14 14 14 13 14 14 14 14 14 16 12 -5 4 -14 20 Confidence Factor: 91.1% 68.3% 64.0% 94.6% Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing 10 10 10 10 10 10 10 10 10 10 0.16 0.16 10.16 10.17 0.317 20 11 10.16 0.16 0.16 0.16 0.16 0.16 0.16 12 10 12.15 0.16 0.16	6	08/08/16	1850.00	1550.00	1030.00	1460.00			
8 12/29/16 1860.00 1510.00 1620.00 1370.00 9 10 1 1 1 1 1 11 1 1 1 1 1 1 12 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 13 1 <	7	10/12/16	1720.00	1300.00	935.00	1320.00			
b 9 1	8	12/29/16	1860.00	1510.00	1620.00	1370.00			
1 0 1 1 1	9								
<pre>iii iii iii iii iii iii iii iiii iiii</pre>	10	↓							
13 14 <td< td=""><td>11</td><td>┨────┤</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td></td<>	11	┨────┤				+			
14 14 14 14 14 15 16 16 16 16 16 17 18 16 16 16 16 18 19 16 16 16 16 16 Coefficient of Variation: 0.27 0.09 0.31 0.10 16 Coefficient of Variation: 12 -5 4 -14 16 Confidence Factor: Prob. Increasing Stable No Trend Prob. Decreasing 17 000	12	┼───┤							
16 0.27 0.09 0.31 0.10 18 12 -5 4 -14 20 0.09 0.31 0.10 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 12 -5 4 -14 91.1% 66.3% 64.0% 94.6% Confidence Factor: Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing Output 0 0 0.47 0.40% 94.6% Output 0.00 0 0 0.01 0.00 0.01 Output 0.027 0.09 0.31 0.10 Output 0.27 0.09 0.31 0.10 Output Prob. Increasing Stable No Trend Poblacodd </td <td>14</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	14								
16 17 18 19 19 20 0.09 0.31 0.10 Coefficient of Variation: Mann-Kendall Statistic (S): 12 -5 4 -14 Confidence Factor: Concentration Trend: P1.1% 66.3% 64.0% 94.6% Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing 1000 0 0 0.16 0.10 0.10 1000 0 0.10 0.10 0.10 1000 0 0.10 0.10 0.10 1000 0 0.10 0.10 0.10 1000 0 0.10 0.10 0.10 1000 0 0.10 0.10 0.10 0.10 1000 0 0 0.10 0.10 0.10 0.10 1000 0 0 0.10 0.10 0.10 0.11 0.11 000 0.15 10/15 10/15 0.16 0.16 0.16 10/16 11/16 0.117 0.17 Sampling Date	15				İ	1		1	
17 17 18 19 10 10 10 19 20 0 0.31 0.10 10 10 10 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0.27 0.09 0.31 0.10 10	16	<u> </u>							
18 Image: Construction of Variation: Mann-Kendal Statistic (5): Definition of Variation: Mann-Kendal Statistic (5): Definition of Variation: Decreasing Stable No Trend Prob. Decreasing 0.10 Coefficient of Variation: Mann-Kendal Statistic (5): Decreasing Stable No Trend Prob. Decreasing 0.10 0.10 Consentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing 0.10 0.10 000000000000000000000000000000000000	17								
19 0 0.27 0.09 0.31 0.10 Mann-Kendall Statistic (S) 12 -5 4 -14 Confidence Factor: 91.1% 68.3% 64.0% 94.6% Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00	18								
20 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0.27 0.09 0.31 0.10 Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 91.1% 68.3% 64.0% 94.6% Prob. Increasing Stable No Trend Prob. Decreasing Image: Concentration Trend: Prob. Increasing Image: Concentration Trend: Image: Concentration Trend: <td< td=""><td>19</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	19								
Mann-Kendall Statistic (S): Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing 000 000 000 000 010 000 010 0000 000 0000 0000 000 000 000 0000 0000 000 0000	20 Coefficien	t of Variation:	0.27	0.09	0.31	0.10			
Confidence Factor: Concentration Trend: 91.1% 68.3% 64.0% 94.6% No Trend Prob. Decreasing Increasing Stable No Trend Prob. Decreasing Image: Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing Image: Concentration Trend: Prob. Increasing Stable No Trend Prob. Decreasing Image: Concentration Trend: Image: Concentration Trend: Image: Concentration Tren	Mann-Kenda	I Statistic (S):	12	-5	4	-14			
Concentration Trent:Prob. IncreasingStableNo TrendProb. DecreasingImage: Concentration Trent:Prob. IncreasingImage: Concentration Trent:Image: Concentration Trent:Image: Concentration Trent:Prob. Increasing or Probably Decreasing:Image: Concentration Trent:Image: Concentration Trent:Image: Concentration Trent:Probably Increasing or Probably Decreasing:Image: Concentration Trent:StableImage: Concentration Trent:Probably Increasing or Probably Decreasing:StableNo Trent:StableImage: Concentration Trent:StableNo Trent:StableNo Trent:StableImage: Concentration Trent:StableNo Trent:StableNo Trent:StableImage: Concentration Trent:Stable <td>Confi</td> <td>dence Factor:</td> <td>91.1%</td> <td>68.3%</td> <td>64.0%</td> <td>94.6%</td> <td></td> <td></td> <td></td>	Confi	dence Factor:	91.1%	68.3%	64.0%	94.6%			
between the same backween general probability increasing or Probably Increasing, < 90% and S>0 = No Trend; < 90%, SS0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.	Concen	tration Trend:	Prob. Increasing	Stable	No Trend	Prob. Decreasing			
besi Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, SSO, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.									
Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest Dest De		10000 🛨							
$\mathbf{f}_{v} = \mathbf{f}_{v} = $									← W-29
besis teast four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> tonfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		$\widehat{}$							— W-30
best teast four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> tonfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		1000							🛶 W-34
otes: tleast four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> orfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		Ĕ						_	₩-35
in the system in the system<		č						_	_
Identify and the set of the set 		b 100 -							
besis besis c		ati							
Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Determining of the system Image: Det		É É						_	
Og 1 09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		lo 10							
B 1 09/15 10/15 109/15 10/15 109/15 10/16 09/15 10/15 109/15 10/16 09/15 10/15 10/15 12/15 01/16 05/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		0							
09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		_						_	
09/15 10/15 12/15 01/16 03/16 05/16 06/16 08/16 10/16 11/16 01/17 03/17 Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		Con							
Sampling Date otes: t least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples. onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		Con 1			6 05/16 06/1	16 08/16 10/16	11/16 01/17	03/17	
otes: t least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		UOU 1 09/1	5 10/15 12/15	01/16 03/1					
otes: t least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples.</i> onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.		UOU 1 09/1	5 10/15 12/15	01/16 03/1	Samplin	a Date			
t least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples</i> . onfidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV $\ge 1 =$ No Trend; < 90% and COV < 1 = Stable.		09/1	5 10/15 12/15	01/16 03/1	Samplin	g Date			
confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.	lotes:	O 1/09/1	5 10/15 12/15	01/16 03/1	Samplin	g Date			
90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.	otes: t least four ind	ependent samp	5 10/15 12/15 ling events per well	01/16 03/1 are required for ca	Samplin	g Date d. Methodology is val	id for 4 to 40 samp	oles.	
	otes: t least four indi	ependent samp rend = Confider	5 10/15 12/15 ling events per well nce (in percent) that	01/16 03/1 are required for ca	Samplin alculating the trend ntration is increas	g Date d. <i>Methodology is val</i> ing (S>0) or decreasir	id for 4 to 40 samp ng (S<0): >95% =	oles. Increasing or Dec	creasing;
lethodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,	otes: t least four ind onfidence in T 90% = Probab	ependent samp rend = Confider	5 10/15 12/15 ling events per well nee (in percent) that r Probably Decreasin	u1/16 U3/1 are required for ca constituent conce ng; < 90% and S	Samplin alculating the trend ntration is increas >0 = No Trend; < \$	g Date d. <i>Methodology is val</i> ing (S>0) or decreasir 00%, S≤0, and COV ≥	id for 4 to 40 samp ng (S<0): >95% = ≥ 1 = No Trend; < 5	oles. Increasing or Dec 90% and COV <	creasing; 1 = Stable.

this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

GSI Environmental Inc., www.gsi-net.com

valuation Date: 9- Facility Name: M Conducted By: K Sampling Sampling S	Nov-22 OSES RO				Job ID:	PBkad-IIa		
Facility Name: M Conducted By: K Sampling Sampling S						FDAUU-UU		
Conducted By: KF Sampling Sampling S	RO				Constituent:	Sulfate		
Sampling S	Point ID.			Cc	oncentration Units:	mg/L		
Sampling S	1 . VIII. ID.	W-31	W-32	W-33				
	Sampling				CONCENTRATIC	N (mg/l)		
Event	Date		T	JULFATE	CONCENTRATIC	/N (IIIg/∟)		
1 0	9/20/17	577.00	901.00	863.00			-	
3 0	9/10/18	595.00	1270.00	1160.00				
4 0	5/10/19	115.00	236.00	443.00				
5 1	0/30/19	131.00	363.00	477.00				
6 0	4/26/20	85.90	95.80	171.00				
7 1	1/01/20	156.00	141.00	104.00				
8 0	3/29/21	173.00	42.90	54.80				
9 () 10	8/15/21	242	/6.30	51.40			+	
11						<u> </u>		
12			1				1	
13								
14								
15								
16								
17								
19								
20								
Coefficient of	Variation:	0.73	1.06	0.92				
Mann-Kendall Sta	atistic (S):	-4	-26	-30				
Confiden	ce Factor:	61.9%	99.7%	100.0%				
Concentrati	ion Trend:	Stable	Decreasing	Decreasing				
	(0000							
	10000							-W/ 21
Ĺ Ĵ	1000							
Ď	1000							- VV-33
5		+			<u> </u>			
E E	100 -			1 month				
ţi								
tra						_		
iue	10 -							
JC								
ō								
0	1 +					+ +		
	03/17	09/17	04/18 10/18	05/19 12/19	06/20 (01/21 07/21	02/22	
				Samalina	Data			
				Sampling	Dale			
0	1 03/17	09/17	04/18 10/18	05/19 12/19 Sampling	06/20 (Date	01/21 07/21	02/22	

this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

			GSI MAN for Con	N-KENDA stituent Tre	ALL TOOI and Analys	L KIT is		
Evaluation Date: Facility Name: Conducted By:	8-Nov-22 MOSES KO			(Job ID Constituent Concentration Units	PBkgd-Dg Boron mg/L		
Sampl	ling Point ID:	W-29	W-30	W-34	W-35			
Sampling	Sampling			BORON		N (ma/L)		
Event 1	Date	4.84	5 76	5 36	6.27	··· (····3· _/		
2	06/08/18	3.70	5.06	4.95	5.81			
3	09/10/18	4.14	4.53	4.53	5.70			
4	05/09/19	1.94	5.13	1.51	5.46			
5	10/50/19	1.69	5.06	4.11	5.63			
7	<u>04/26/20</u> 11/01/20	1.36	4.18 4.26	4.26 5.47	5.3U 5.05	1		
8	03/24/21	1.25	4,33	5.80	616			
9	08/15/21		4.01	4.83	6.04			
10								
11								
12								
13								
14								
16								
17								
18								
19								
20	of Variation.	0.50	0.40	0.00	0.44			
Mann-Kendall	Statistic (S):	-24	-23	0.20 <u>4</u>	0.14			
Confid	lence Factor:	99.9%	99.1%	61.9%	46.0%			
Concent	ration Trend:	Decreasing	Decreasing	No Trend	Stable			
	Concentration (mg/L)							₩-29 ₩-30 ₩-34 ₩-35
	03/17	7 09/17	04/18 10/18	05/19 12/1	9 06/20	01/21 07/21	02/22	
				Sampling	Data			
				Samping	Date			
Notes: At least four inde Confidence in Tre ≥ 90% = Probably Methodology bas Ground Water, 4	pendent sampl end = Confider y Increasing or ed on "MARO 1(3):355-367, 1	ling events per we lice (in percent) tha Probably Decrea S: A Decision Sup 2003.	II are required for ca at constituent concer sing; < 90% and S> port System for Opti	Iculating the trend. htration is increasin 0 = No Trend; < 90 mizing Monitoring I	Methodology is va g (S>0) or decreas %, S≤0, and COV Plans", J.J. Aziz, M	alid for 4 to 40 sam ing (S<0): >95% = ≥ 1 = No Trend; < . Ling, H.S. Rifai, (ples. = Increasing or 90% and COV C.J. Newell, an	Decreasing; / < 1 = Stable. d J.R. Gonzales,

uation Date:	9-Nov-22				Job ID:	PBkgd-Dg		
acility Name: inducted By:	MOSES KRO			Co	Constituent: ncentration Units:	Calcium mg/L		
Samn	ling Point ID:	W-29	W-30		W-35			
Sampling	Sampling	11-23	11-50	041.01111		NI (/!)		
Event	Date			CALCIUM	CONCENTRATIO	DN (mg/L)	-	
1	09/20/17	128.00	127.00	181.00	186.00			
2	06/08/18	127.00	127.00	180.00	200.00			
4	05/00/18	95.40	115.00	64.70	204.00			
5	10/30/19	100.00	161.00	154.00	111 00			
6	04/26/20	69.70	135.00	182.00	209.00			
7	11/01/20	84.00	141.00	217.00	207.00			
8	03/24/21	89.90	133.00	229.00	213.00			
9	08/15/21		100	210.00	216.00			
10								
12								
12								
14								
15								
16								
17								
18								
19								
20	of Variation	0.24	0.14	0.28	0.47			
lann-Kendal	Statistic (S):	-16	0.14	14	20			
Confid	dence Factor:	96.9%	46.0%	91.0%	97.8%			
Concent	ration Trend:	Decreasing	Stable	Prob. Increasing	Increasing			
		y		5	3			
	1000 -							
								→ W-29
	$\widehat{}$				×	* ¥		
1	l/g							
	Ê ¹⁰⁰							→ W-35
	ž l			-	•			
	<u> </u>							
	at							
	는 ¹⁰							
	ē							
	2							
	ဂိ							
	- 1+							
	03/11	09/17	04/18 10/18	05/19 12/19	06/20 (01/21 07/21	02/22	
				Sampling	Date			
				Camping				
e.								
S:	nendert com	ling events por wa	Il are required for	calculating the trand	Mathadalaan in	lid for 1 to 10 com	nloc	

Facility Name: MOSES Constituent: Chloride Conducted By: KRO Concentration Units: mg/L Sampling Point ID: W-29 W-30 W-34 W-35 Sampling Event Sampling Date CHLORIDE CONCENTRATION (mg/L) 1 09/20/17 80.60 76.50 117.00 120.00 1 2 06/08/18 87.90 87.80 116.00 128.00 1 3 09/10/18 81.50 81.10 114.00 132.00 1 4 05/09/19 92.10 97.50 45.10 75.50 1 5 10/30/19 86.10 59.40 103.00 95.50 1	
Conducted By: KRO Concentration Units: mg/L Sampling Point ID: W-29 W-30 W-34 W-35 Sampling Event Date CHLORIDE CONCENTRATION (mg/L) 1 09/20/17 80.60 76.50 117.00 120.00 2 06/08/18 87.90 87.80 116.00 128.00 3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
Sampling Point ID: W-29 W-30 W-34 W-35 Sampling Event Date CHLORIDE CONCENTRATION (mg/L) 1 09/20/17 80.60 76.50 117.00 120.00 2 06/08/18 87.90 87.80 116.00 128.00 3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
Sampling Event Sampling Date CHLORIDE CONCENTRATION (mg/L) 1 09/20/17 80.60 76.50 117.00 120.00 2 06/08/18 87.90 87.80 116.00 128.00 3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
Event Date CHOONDE CONCENTRATION (ng/L) 1 09/20/17 80.60 76.50 117.00 120.00 2 06/08/18 87.90 87.80 116.00 128.00 1 3 09/10/18 81.50 81.10 114.00 132.00 1 4 05/09/19 92.10 97.50 45.10 75.50 1 5 10/30/19 86.10 59.40 103.00 95.50 1	
1 09/20/17 80.60 76.50 117.00 120.00 2 06/08/18 87.90 87.80 116.00 128.00 3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
2 06/08/18 87.90 87.80 116.00 128.00 3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
3 09/10/18 81.50 81.10 114.00 132.00 4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
4 05/09/19 92.10 97.50 45.10 75.50 5 10/30/19 86.10 59.40 103.00 95.50	
<u>5</u> 10/30/19 86.10 59.40 103.00 95.50	
<u>6</u> 04/26/20 88.20 51.40 108.00 129.00	
7 11/01/20 88.10 44.00 114.00 118.00	
<u>8</u> 03/24/21 83.30 40.50 132.00 129.00	
<u>9</u> 08/15/21 33.4 125.00 137.00	
20	
Coefficient of Variation: 0.05 0.36 0.23 0.17	
Mann-Kendall Statistic (S): 6 -26 5 11	
Confidence Factor: 72.6% 99.7% 65.7% 84.6%	
Concentration Trand No Trand No Trand No Trand	
Concentration Hend. No Hend Decreasing No Hend No Hend	
1000	
1000	-W/ 20
1000	-W-29

Notes:

 At least four independent sampling events per well are required for calculating the trend. *Methodology is valid for 4 to 40 samples*.
 Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

uation Date:	9-Nov-22				Job ID: PBkgd-Dg								
nducted Bv:	KRO				Constituent: Concentration Units	mg/L							
Samp	ling Point ID:	W-29	W-30	W-34	W-35		_						
ampling	Sampling												
Event 1	Date 09/20/17	0.10	0.39	0.24	0.10								
2	06/08/18	0.37	0.92	0.90	0.16								
3	09/10/18	0.41	0.91	0.66	0.10								
4	05/09/19	0.21	0.85	0.35	0.10								
5 6	10/30/19	0.24	0.5/	0.32	0.10		+						
7	11/01/20	0.14	0.69	0.44	0.06	1	1						
8	03/24/21	0.15	0.58	0.48	0.07	1	1						
9	08/15/21		0.824	0.35	0.06								
10													
11						l							
12													
13	<u>├</u>						+						
15					1	1	1						
16						1							
17													
18													
19					-		+						
Coefficien	t of Variation	0.48	0.25	0.45	0.34								
ann-Kendal	Statistic (S):	-6	-6	-1	-17								
Confi	dence Factor:	72.6%	69.4%	50.0%	95.1%								
Concen	tration Trend:	Stable	Stable	Stable	Decreasing								
	_												
	1							→ W-29					
	L		m										
	Ĵu l	K ,			<u> </u>								
	-				~								
	6 0.1		>	XX	\sim								
	ati												
	Iti												
	eu												
	2												
	<u>o</u>												
	0.01												
	03/17	09/17	04/18 10/18	05/19 12/	19 06/20	01/21 07/21	02/22						
				Samplin	n Date								
				Campin	y Date								
·c.													
ast four inde	ependent sampli	na events per we	I are required for c	alculating the trend	. Methodoloav is ve	alid for 4 to 40 sam	nples.						
	end = Confidence	e (in percent) the	at constituent conce	ntration is increasi	ng (S>0) or decreas	ina (S<0): >95% :	= Increasing or F	Decreasing:					
idence in Tr					J (=: -, 5: 000.000	J (= .= ,							

aluation Date	9-Nov-22				Job II): PBkgd-Dg					
onducted By	KRO			c	Constituen	к: рн s: <mark>S.U.</mark>					
Sam	oling Point ID:	W-29	W-30	W-34	W-35						
Sampling Event	Sampling Date			PH C	ONCENTRATIO	N (S.U.)					
1	09/20/17	6.85	6.85	6.75	6.74	I		1			
2	06/08/18	6.62	6.78	6.85	6.55						
3	09/10/18	6.30	5.25	6.64	5.42						
5	10/30/19	6.85	6.72	6.78	<u>6.94</u> 6.92						
6	04/26/20	6.70	7.49	7.67	<u>6.50</u>						
7	11/01/20	6.98	7.11	7.50	6.73						
8	03/24/21	6.95	5.67	6.20	5.29						
9	08/15/21		5.83	6.16	5.70						
11	+ +										
12	+ +					1					
13											
14											
15						_					
16	╂───┤										
18	+ +										
19	1										
20											
Coefficier	t of Variation:	0.03	0.11	0.08	0.10						
Mann-Kenda	II Statistic (S):	9	-6	-10	-12						
Confi	uence Factor:	83.2%	69.4%	82.1%	87.0%						
Concer	tration (rend:	Notrend	Stable	Stable	Stable						
ntration (S.U.)											
	2000 1 03/17	09/17	04/18 10/18	05/19 12/19 Sampling	9 06/20 Date	01/21 07/2	21 02/22				
toci	ependent sampli rend = Confiden	ing events per wel ce (in percent) tha Probably Decreas	ll are required for ca it constituent concer sing; < 90% and S>	lculating the trend. htration is increasing 0 = No Trend; < 90	Methodology is v (S>0) or decrea %, S≤0, and COV lans", J.J. Aziz, N	valid for 4 to 40 s sing (S<0): >95 ⁄≥1 = No Treno A. Ling, H.S. Rifa	samples. % = Increasing or De d; < 90% and COV < ai, C.J. Newell, and 、	ecreasing; < 1 = Stable. J.R. Gonzales,			

Iluation Date: acility Name: onducted By:	9-Nov-22 MOSES KRO			C	Job ID: Constituent: concentration Units:	PBkgd-Dg Sulfate mg/L		
Samp	ling Point ID:	W-29	W-30	W-34	W-35			
Sampling Event	Sampling Date			SULFAT	E CONCENTRATIO	ON (mg/L)		
1	09/20/17	882.00	734.00	873.00	854.00			
2	06/08/18	694.00	724.00	835.00	925.00			
3	09/10/18	858.00	713.00	819.00	940.00			
4	05/09/19	361.00	734.00	164.00	501.00			
5	10/30/19	252.00	755.00	6/7.00	682.00			
7	11/01/20	214.00	735.00	930.00	945.00			
8	03/24/21	224.00	686.00	1130 00	1010 00	İ		
9	08/15/21	22 1.00	606.00	933.00	992.00			
10								
11	ļ T							
12								
13								
14								
16								
17								
18								
19								
20								
Coefficien	t of Variation:	0.62	0.07	0.33	0.20			
Mann-Kendal	l Statistic (S):	-22	-0	10 92.1%	2U 07.8%			
Conn		99.070	05.7 /0	No Trend	57.0%			
Concen	tration Trend:	Decreasing	Stable	NO Irend	Increasing			
	10000 -							
								→ W-29
								—— W-30
	1000 -	-	XX		XX			
	ິ							
	5							
	5 100 -							
	ti ti							
	tra							
	<u> </u>							
	ŭ l							
	6							
	υ ₁		_				_	
	03/17	7 09/17	04/18 10/18	05/19 12/1	9 06/20 (01/21 07/21	02/22	
	00,11	00,11			0 00/20 0		02/22	
				Sampling	Date			

				N-KENDA	LL TOO	LKIT		
			for Con	stituent Tre	nd Analys	sis		
valuation Date:	9-Nov-22				Job II): PBkgd-Dg		
Facility Name:	MOSES				Constituen	t: TDS		
Conducted By:	KRO			C	oncentration Units	s: <mark>mg/L</mark>		
Samp	bling Point ID:	W-29	W-30	W-34	W-35			
Sampling	Sampling					l (ma/l)		
Event	Date		1	105 0	ONCENTIATIO	t (ilig/⊏)		
1	09/20/17	1540.00	1570.00	1720.00	1650.00			
2	06/08/18	1310.00	1280.00	1540.00	1660.00			
4	05/09/19	727.00	1250.00	568.00	865.00			
5	10/30/19	621.00	1330.00	1260.00	1280.00			
6	04/26/20	563.00	1150.00	1370.00	1600.00			
7	11/01/20	517.00	1140.00	1560.00	1550.00			
8	03/24/21	495.00	1070.00	1640.00	1510.00			
9	08/15/21		979	1620.00	1650.00	+		
10	┼───┼							
12	╂───┼					+		
13	<u> </u>							
14								
15	1							
16								
17								
18								
19								
Coefficien	t of Variation	0.52	0 14	0.25	0 17			
Mann-Kendal	Statistic (S):	-24	-26	4	-5			
Confi	dence Factor:	99.9%	99.7%	61.9%	65.7%			
Concen	tration Trend:	Decreasing	Decreasing	No Trend	Stable			
	10000 -							
								→ W-29
	Î	<u> </u>	× ×		Y	<u> </u>		
	5 ¹⁰⁰⁰							
	E			—				───W-35
	č							
	<u>o</u> 100 -							
	at							
	E E							
	i 10 -							
	2							
	8				+			
	පී ₁			05/10 12/10	06/20	01/21 07/2	1 02/22	
	8 1 03/17	7 09/17	04/18 10/18	03/19 12/13				
	පී ₁ _{03/11}	7 09/17	04/18 10/18	Sampling	Date			
	ິບ ₁	7 09/17	04/18 10/18	Sampling	Date			
otes:	8 1 03/11	7 09/17	04/18 10/18	Sampling	Date			
otes: least four inde	8 1 03/11	7 09/17	04/18 10/18	Sampling	Date	ralid for 4 to 40 sa	amples.	
otes: least four inde unfidence in Ti	8 1 03/12 ependent samp rend = Confider	7 09/17 ling events per we ice (in percent) th	04/18 10/18 ell are required for ca at constituent concer	Sampling	Date Methodology is v (S>0) or decrea	ralid for 4 to 40 sa sing (S<0): >95%	amples. 6 = Increasing or [Decreasing;
ytes: least four inde infidence in Tr 30% = Probab	ependent samp rend = Confider ly Increasing or	7 09/17 ling events per we ice (in percent) th Probably Decrea	04/18 10/18 ell are required for ca at constituent concer sing; < 90% and S>	Iculating the trend. tration is increasing 0 = No Trend; < 90	Date Methodology is v_1 (S>0) or decrease v_6 , S \leq 0, and COV	ralid for 4 to 40 sa sing (S<0): >95% ≥ 1 = No Trend;	amples. % = Increasing or E < 90% and COV	Decreasing; < 1 = Stable.

APPENDIX B Tables

TABLE 1 Background Ground Water Analytical Data Bottom Ash Pond Mt. Pleasant, Titus County, Texas

			Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS		
Well ID	Sample Dates U-D-NE (mg/L) (mg/L) (mg/L) 10/15/15 U 3.74 130 66		(mg/L)	(mg/L)	(S.U.)	(mg/L)	(mg/L)				
	10/15/15	U	3.74	130	66.2	0.136 J	5.67	808	1,510		
W-31	12/07/15	U	3.81	136	51.2	0.275 J	5.86	714	1,250		
	02/22/16	U	3.65	130	49.2	0.124	5.79	694	1,500		
	04/04/16	U	3.80	119	48.9	0.22 J	6.06	737	1,220		
	06/06/16	U	3.84	104	47.8	<0.1	6.17	701	1,150		
	08/08/16	U	2.67	92.4	58.4	<0.1	6.11	396	862		
	10/12/16	U	1.74	71.7	55.1	0.112	6.13	292	654		
	12/29/16	U	3.15	89.7	49.3	<0.1	4.99	729	1,150		
	10/15/15	U	5.85	282	160	0.44	6.72	1,040	1,970		
	12/07/15	U	6.76	260	122	1.19	6.74	872	1,610		
	02/22/16	U	6.95	247	124	0.79	6.74	850	1,870		
W-32	04/04/16	U	6.50	239	139	1.01	6.73	844	1,380		
W 52	06/06/16	U	6.18	192	105	0.758	6.71	694	1,440		
	08/08/16	U	4.43	261	110	0.544	6.71	945	1,650		
	10/12/16	U	6.32	284	134	0.339	6.19	986	1,820		
	12/29/16	U	6.38	310	147	0.573	6.46	1,210	1,950		
	10/15/15	U	6.36	311	162	2.01	7.14	1,080	1,630		
	12/07/15	U	6.68	252	120	2.8	7.12	853	1,680		
	02/22/16	U	7.52	243	124	2.4	7.11	790	1,960		
W-33	04/04/16	U	7.24	278	171	2.5	7.14	935	1,540		
	06/06/16	U	7.08	229	120	2.12	7.10	700	1,490		
	08/08/16	U	6.37	215	108	1.92	6.97	655	1,300		
	10/12/16	U	5.15	237	111	2.43	6.84	797	1,540		
	12/29/16	U	5.23	275	125	2.25	6.82	965	1,730		
	10/15/15	D	4.58	111	101	0.31/J	6.21	861	1,680		
	12/07/15	D	3.47	86.6	81.1	0.358 J	6.22	501	1,020		
	02/22/16	D	4.98	114	82.3	0.24	6.27	909	1,840		
W-29	04/04/16	D	5.52	169	/5.9	0.229 J	6.17	465	850		
	06/06/16	D	5.77	162	85.5	<0.1	6.29	696	1,230		
	08/08/16	D	5.70	155	85.0	<0.1	6.52	1,100	1,850		
	10/12/10	D	6.42	1/4	02.4	0.4	6.19	1,140	1,720		
	10/15/15	D	6.06	177	106	0.233	0.1 1	1,150	1,000		
	12/07/15	D	7.04	175	0.00 7	0.38	5.78	919	1,490		
	02/22/16	D	7.04 6.97	170	96.3	0.809	5.95	073 072	1,330		
	02/22/10	D	6.78	1/1	90.5	0.721	5.07	075	1,750		
W-30	04/04/16	D	6.89	132	94.9	0.3591	5.96	884	1,460		
	08/08/16	D	5.94	136	85.7	0.451	6.23	848	1,100		
	10/12/16	D	6.51	130	79.9	0.788	6.02	817	1 300		
	12/29/16	D	8.54	192	85.3	0.501	5.34	863	1,510		
	10/15/15	D	2 38	124	87.1	0.38	6.55	453	878		
	12/07/15	D	4.10	153	82.2	0.494	6.58	671	1.500		
	02/22/16	D	3.44	117	85.9	0.422	6.59	641	1,570		
	04/04/16	D	2.09	86.9	80.7	0.287 J	6.63	378	817		
W-34	06/06/16	D	2.12	66.2	73	<0.1	6.64	343	795		
	08/08/16	D	3.56	121	98.4	<0.1	6.52	634	1,030		
	10/12/16	D	3.13	110	84.9	0.293	6.57	556	935		
	12/29/16	D	6.10	158	122	0.336 J	6.03	937	1,620		
	10/15/15	D	5.58	175	98.2	<0.1	6.05	893	1,720		
	12/07/15	D	6.13	177	90.2	0.128 J	6.16	861	1,580		
	02/22/16	D	6.29	160	85.4	<0.1	6.12	824	1,650		
	04/04/16	D	6.16	169	91.3	<0.1	6.09	835	1,310		
رد-۱۸	06/06/16	D	6.17	158	98.5	<0.1	6.36	858	1,460		
	08/08/16	D	6.07	159	97.8	<0.1	6.41	810	1,470		
	10/12/16	D	6.25	150	97.8	0.1	6.12	793	1,320		
	12/29/16	D	6.89	151	110	< 0.1	5.06	839	1,370		

NOTES:

1) Abbreviations: mg/L - milligrams per Liter; S.U. - Standard Units; TDS - Total Dissolved Solids

2) The symbol "<" means less than the value following the symbol.

3) The symbol "J" indicates the concentration is below the method quantitation limit; the result is considered an estimate.

TABLE 2 SUMMARY OF DETECTION MONITORING ANALYSES Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

										DETECTION	N MONITORING	- APPENDIX III PAF	AMETERS										
					Number of							Minimum	Maximum	Visual									Total Number
	Total				Detects to		Minimum		Percentage	Handling of		Censored	Censored	Trend from	Any			Any	-				of Detection
Wall ID	No. of	Number of	Number of	Number of	Non-Detects	Percent	Detected	Maximum Detected Values	Of Non Detecto	Non-Reporting	Reporting	Value (fer NDe)	Value (fee NDe)	Time-Series	Outliers	Law Outlines	Uich Outline	Outliers Domourd 2	Distribution	Mann-Kendal	Trand Analysia	TEXAS	Exceedances
Wett ID	Samples	Detects	Non-detects	Missing Data	to Missing	Detects	values	Detected values	Non-Detects	Data	Limits	(for NDS)	(TOP NDS)	Graphs	Identified?	Low Outliers	High Outliers	Removed?	Туре	Trend Analysis	Trend Analysis	GWPS	Above GWP5
W-31	8	8	0	0	8 - 0 - 0	100%	1 7400	3 8400	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Non-Parametric		ISE		
W-32	8	8	0	0	8 - 0 - 0	100%	4.4300	6.9500	0%	1/2 Reporting Limit				Increasing	Yes	Yes	No	No	Normal	ISE			7
W-33	8	8	0	0	8 - 0 - 0	100%	5.1500	7.5200	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	ISE			8
W-29	8	8	0	0	8 - 0 - 0	100%	3.3200	6.5200	0%	1/2 Reporting Limit	0.03			Increasing	No	No	No	No	Normal	SSE Increasing		4.9	5
W-30	8	8	0	0	8 - 0 - 0	100%	5.9400	8.5400	0%	1/2 Reporting Limit				Increasing	Yes	No	Yes	No	Normal	ISE			8
W-34	8	8	0	0	8 - 0 - 0	100%	2.0900	6.1000	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			1
W-35	8	8	0	0	8 - 0 - 0	100%	5.5800	6.8900	0%	1/2 Reporting Limit				Increasing	Yes	Yes	Yes	No	Normal	ISE			8
Calcium, Total (mg/l	_)																						
W-31	8	8	0	0	8 - 0 - 0	100%	71.7	136.0	0%	1/2 Reporting Limit				Stable	No	No	No	No	Normal	SSE Decreasing			
W-32	8	8	0	0	8 - 0 - 0	100%	192.0	310.0	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			
W-33	8	8	0	0	8 - 0 - 0	100%	215.0	311.0	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			
W-29	8	8	0	0	8 - 0 - 0	100%	86.6	185.0	0%	1/2 Reporting Limit	0.3			Increasing	No	No	No	No	Normal	SSE Increasing			
W-30	8	8	0	0	8 - 0 - 0	100%	130.0	192.0	0%	1/2 Reporting Limit				Increasing	Yes	No	Yes	No	Non-Parametric		ISE		
W-34	8	8	0	0	8 - 0 - 0	100%	66.2	158.0	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			
W-35	8	8	0	0	8 - 0 - 0	100%	150.0	177.0	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	SSE Decreasing			
Chloride, Total (mg/	L)									-													
W-31	8	8	0	0	8 - 0 - 0	100%	47.8	66.2	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	ISE			
W-32	8	8	0	0	8 - 0 - 0	100%	105.0	160.0	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			
W-33	8	8	0	0	8 - 0 - 0	100%	108.0	171.0	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Log-Normal	ISE		350	
W-29	8	8	0	0	8 - 0 - 0	100%	75.9	101.0	0%	1/2 Reporting Limit	1			Stable	Yes	Yes	Yes	No	Log-Normal	ISE		250	
W-30	8	8	0	0	8 - 0 - 0	100%	79.9	106.0	0%	1/2 Reporting Limit				Decreasing	NO	No	No	No	Normal	SSE Decreasing			
W-34	8	8	0	0	8-0-0	100%	/3.0	122.0	0%	1/2 Reporting Limit				Increasing	Yes	No	Yes	No	Normal	ISE			
VV-55	•	0	U	0	8-0-0	100%	65.4	110.0	0%	2 Reporting Limit				increasing	Tes	INO	res	INO	Normat	ISE			
Fluoride, I otal (mg/	L)	r.	7	0	F 7 0	(79/	0.11	0.28	7.00/	PROC	-	0.10	0.10	Ctable	Na	Na	No	Na	Normal	165			
W-51	°	5	3	0	5-5-0	03%	0.11	0.28	56%	KKUS		0.10	0.10	Stable	NO	INU	INO	INO.	Normat	ISE			
W-52	8	8	0	0	8-0-0	100%	0.54	1.19	0%	1/2 Reporting Limit				Decreasing	NO	NO	NO	NO	Normal	ISE			
W-29	8	6	0	0	6 - 7 - 0	75%	0.23	0.40	25%		0.4	0.10	0.10	Stable	No	No	No	No	Normal	ISE		2.0	
W-20	0	0	2	0	0-2-0	100%	0.25	0.00	23%	1/ Departing Limit	0.1	0.10	0.10	Stable	No	No	No	No	Normal	ISE		2.0	
W-34	8	6	0	0	6 - 7 - 0	75%	0.30	0.98	25%			0.10	0.10	Stable	No	No	No	No	Normal	ISE			
W-35	8	2	6	0	2 - 6 - 0	25%	0.10	0.13	75%	Non-parametric		0.10	0.10	Stable	No	No	No	No	Non-Parametric		ISE		
nH (S U)	0	-	Ū	Ŭ	200	2570	0.10	0.15	7370	non parametric		0.10	0.10	Stable	110	110	110	110	Hon Fuldineure		152		
W-31	8	8	0	0	8 - 0 - 0	100%	4.99	6.17	0%	1/2 Reporting Limit					Yes	Yes	No	No	Normal	SSE Increasing			
W-32	8	8	0	0	8 - 0 - 0	100%	6.19	6.74	0%	1/2 Reporting Limit					No	No	No	No	Non-Parametric		SSE Decreasing		
W-33	8	8	0	0	8 - 0 - 0	100%	6.82	7.14	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Non-Parametric		SSE Decreasing	easing	
W-29	8	8	0	0	8 - 0 - 0	100%	6.14	6.32	0%	1/2 Reporting Limit	0.1				No	No	No	No	Normal	ISE		6.5-8.5	
W-30	8	8	0	0	8 - 0 - 0	100%	5.34	6.23	0%	1/2 Reporting Limit				Decreasing	Yes	Yes No	No	No	Normal	SSE Increasing			
W-34	8	8	0	0	8 - 0 - 0	100%	6.03	6.64	0%	1/2 Reporting Limit					Yes	Yes	No	No	Non-Parametric		ISE		
W-35	8	8	0	0	8 - 0 - 0	100%	5.06	6.41	0%	1/2 Reporting Limit				Decreasing	Yes	Yes	No	No	Non-Parametric		ISE		
Sulfate, Total (mg/L)																						
W-31	8	8	0	0	8 - 0 - 0	100%	292	808	0%	1/2 Reporting Limit					No	No	No	No	Non-Parametric		ISE		8
W-32	8	8	0	0	8 - 0 - 0	100%	694	1210	0%	1/2 Reporting Limit					No	No	No	No	Normal	ISE			8
W-33	8	8	0	0	8 - 0 - 0	100%	655	1080	0%	1/2 Reporting Limit				Stable	No	No	No	No	Normal	ISE			8
W-29	8	8	0	0	8 - 0 - 0	100%	465	1150	0%	1/2 Reporting Limit	3			Increasing	No	No	No	No	Normal	SSE Increasing		250	8
W-30	8	8	0	0	8 - 0 - 0	100%	817	925	0%	1/2 Reporting Limit					No	No	No	No	Normal	ISE			8
W-34	8	8	0	0	8 - 0 - 0	100%	343	937	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			8
W-35	8	8	0	0	8 - 0 - 0	100%	793	893	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	ISE			8
TDS, Total (mg/L)																							
W-31	8	8	0	0	8 - 0 - 0	100%	654	1510	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	SSE Decreasing			8
W-32	8	8	0	0	8 - 0 - 0	100%	1380	1970	0%	1/2 Reporting Limit				Increasing	No	No	No	No	Normal	ISE			8
W-33	8	8	0	0	8 - 0 - 0	100%	1300	1960	0%	1/2 Reporting Limit					No	No	No	No	Normal	ISE			8
W-29	8	8	0	0	8 - 0 - 0	100%	850	1860	0%	1/2 Reporting Limit	10				No	No	No	No	Normal	ISE		500	8
W-30	8	8	0	0	8 - 0 - 0	100%	1300	1790	0%	1/2 Reporting Limit					Yes	Yes	Yes	No	Normal	ISE			8
W-34	8	8	0	0	8 - 0 - 0	100%	795	1620	0%	1/2 Reporting Limit					No	No	No	No	Normal	ISE			8
W-35	8	8	0	0	8 - 0 - 0	100%	1310	1720	0%	1/2 Reporting Limit				Decreasing	No	No	No	No	Normal	ISE			8

NOTES:

Italized well IDs indicate that the well is considered a background well.
The trend and distribution determinations were based on the background data points for all wells.
Statistical analyses conducted were based on a sample set of the population considered as background.
The use of the symbol '---', throughout this table, indicates that no values were determined for this cell.
All data was analyzed for the presence of low and high outliers.
Current outliers were removed if statistically appropriate, otherwise the potential outlier was considered part of the data set.
The reporting limits used for these analyses were the laboratory reporting limit.
A simple comparison was made between the background results at the ground water protection standard (GWPS) as defined by the Texas Commission of Environmental Quality.
TABLE 3 Statistical Analysis of Ground Water Data Box Plots - Background Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Parameter	Well ID	Gradient	Comments
	MW-31		The boly ground wells (up and ignt) subject limited wavishility between well MW 71 and
	MW-32	Up	The background wells (upgradient) exhibit limited variability between well MW-31 and
	MW-33		wells MW-52 and MW-55; nowever, all wells lie below a value of 7.5 mg/L.
Boron	MW-29		
	MW-30		The background wells (downgradient) exhibit less variability (all lie between +2 to 7
	MW-34	Down	mg/L) than the upgradient background wells. All downgradient wells lie below the
	MW-35		maximum of the upgradient wells for Boron.
	MW-31		The background wells (upgradient) exhibit variability between well MW-31 and wells
	MW-32	Up	MW-32 and MW-33; however, wells MW-32 and MW-33 exhibit the highest of all wells
	MW-33		both upgradient and downgradient.
Calcium	MW-29		
	MW-30	5	The background wells (downgradient) exhibit limited to no variability across all
	MW-34	Down	downgradient wells.
	MW-35		
	MW-31		The background wells (upgradient) exhibit variability between well MW-31 and wells
	MW-32	Up	MW-32 and MW-33; however, wells MW-32 and MW-33 exhibit the highest of all wells
	MW-33		both upgradient and downgradient.
Chloride	MW-29		
	MW-30	_	The background wells (downgradient) exhibit limited to no variability across all
	MW-34	Down	downgradient wells.
	MW-35		
	MW-31		
	MW-32	Up	The background wells (upgradient) exhibit variability between all wells; however, many
Fluoride	MW-33		J-valued results result in the variability.
	MW-29		
	MW-30		The background wells (downgradient) exhibit limited to no variability across all
	MW-34	Down	downgradient wells.
	MW-35		
	MW-31		
	MW-32	Up	The background wells (upgradient) exhibit increasing variability from wells MW31 to
	MW-33		MW-32 to MW-33; yet lie within a band between 5.7 and approximately 7.1.
pН	MW-29		
	MW-30	Davin	The background wells (downgradient) exhibit little variability and lie within a band from
	MW-34	Down	5.85 to 6.6.
	MW-35		
	MW-31		The background walls (ungradient) exhibit significant variability across all three (7) walls
	MW-32	Up	the background wells (upgradient) exhibit significant variability across all three (5) wells
	MW-33	1	varying from approximately 250 to 1200+ fig/L.
Sulfate	MW-29		
	MW-30	Down	The background wells (downgradient) exhibit less variability than the upgradient wells
	MW-34	Down	but still varied from approximately 400 to 1150 mg/L.
	MW-35		
	MW-31		The background walls (ungradient) exhibit variability across all three (7) wells varying
	MW-32	Up	from approximately 650 to approximately 2000 mg/l
	MW-33		ווטווו מאווומנפנא טסט נט מאווומנפנא 2000 וווק/ב.
TDS	MW-29		
	MW-30	Down	The background wells (downgradient) exhibit similar variability as the upgradient wells
	MW-34	DOWI	varying from 800 to 1960 mg/L.
	MW-35		-

Notes:

1) The order of the wells is based upon upgradient versus downgradient, and then in numerical order.

2) The well which are italized represent the upgradient wells.

3) Gradient represents whether the well is upgradient or downgradient.

Statistical Analysis of Ground Water Data ANOVA Analysis - Non-parametric Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Nonparametric Oneway ANOVA (Kruskal-Wallis Test)

Date/Time of Computation ProUCL 5.2 12/8/2023 1:03:42 PM From File D6-ANOVA.xls Full Precision OFF

Boron

Group	Obs	Median	Ave Rank	Z
d	32	6.065	27.66	-0.447
u	24	6.015	29.63	0.447
Overall	56	6.065	28.5	
K-W (H-Stat)	DOF	P-Value	(Approx. Chi	square)
0.2	1	0.655		
0.2	1	0.655	(Adjusted	for Ties)

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Calcium

Chloride

Group	Obs	Median	Ave Rank	Z
d	32	145.5	22.97	-2.931
u	24	238	35.88	2.931
Overall	56	155.5	28.5	
K-W (H-Stat)	DOF	P-Value	(Approx. Ch	isquare)
8.588	1	0.00338		
8.591	1	0.00338	(Adjusted	d for Ties)

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Obs	Median	Ave Rank	Z
32	86.5	24.81	-1.954
24	115.5	33.42	1.954
56	95.05	28.5	
) DOF	P-Value	(Approx. Chi	square)
1	0.0507		
1	0.0507	(Adjusted	for Ties)
	Obs 32 24 56) DOF 1 1	Obs Median 32 86.5 24 115.5 56 95.05 DOF P-Value 1 0.0507 1 0.0507	Obs Median Ave Rank 32 86.5 24.81 24 115.5 33.42 56 95.05 28.5 0 DOF P-Value (Approx. Chiration of the second

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

TABLE 4 Statistical Analysis of Ground Water Data ANOVA Analysis - Non-parametric Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

рН				
Group	Obs	Median	Ave Rank	Z
d	32	6.18	23.41	-2.699
u	24	6.715	35.29	2.699
Overall	56	6.225	28.5	
K-W (H-Stat) 7.283 7.285	DOF 1 1	P-Value 0.00696 0.00695	(Approx. Chi (Adjusted	square) I for Ties)

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Julie				
Group	Obs	Median	Ave Rank	Z
d	32	843.5	28.44	-0.0331
u	24	802.5	28.58	0.0331
Overall	56	837	28.5	
K-W (H-Stat)	DOF	P-Value	(Approx. Chi	square)
0.0011	1	0.974		
0.0011	1	0.974	(Adjusted	for Ties)

Sulfato

TDS

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Group	Obs	Median	Ave Rank	Z
d	32	1480	26.78	-0.911
u	24	1525	30.79	0.911
Overall	56	1500	28.5	
	5.05	5.14		,
K-W (H-Stat)	DOF	P-Value	(Approx. Chis	square)
0.829	1	0.362		
0.83	1	0.362	(Adjusted	for Ties)

Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 5.334107 sd = 1.621487

Su - 1.02140

Estimation Method: -----mvue

Data: -----Boron

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.9192611

Test Statistic Parameter: -----n = 56

P-value:-----0.001117733

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	-Shapiro-Wilk GOF
Hypothesized Distribution:	-Lognormal
Estimated Parameter(s):	meanlog = 1.6159899 sdlog = 0.3686093
Estimation Method:	-mvue
Data:	-Boron
Number NA/NaN/Inf's Removed:	-2
Sample Size:	-56
Test Statistic:	W = 0.860573
Test Statistic Parameter:	-n = 56
P-value:	-1.169028e-05
Alternative Hypothesis:	-True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 169.9018 sd = 63.8619

Estimation Method: -----mvue

Data: -----Calcium

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.9347253

Test Statistic Parameter: -----n = 56

P-value:-----0.004653463

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	-Shapiro-Wilk GOF
Hypothesized Distribution:	-Lognormal
Estimated Parameter(s):	-meanlog = 5.0661168 sdlog = 0.3780929
Estimation Method:	-mvue
Data:	-Calcium
Number NA/NaN/Inf's Removed:	-2
Sample Size:	-56
Test Statistic:	-= 0.9737109
Test Statistic Parameter:	-n = 56
P-value:	-0.2584534
Alternative Hypothesis:	-True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 96.59643 sd = 28.30395

Estimation Method: -----mvue

Data: -----Chloride

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.9586897

Test Statistic Parameter: -----n = 56

P-value:-----0.05278784

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	Shapiro-Wilk GOF
Hypothesized Distribution:	Lognormal
Estimated Parameter(s):	meanlog = 4.5269185 sdlog = 0.3038545
Estimation Method:	mvue
Data:	Chloride
Number NA/NaN/Inf's Removed:	2
Sample Size:	56
Test Statistic:	W = 0.9551078
Test Statistic Parameter:	n = 56
P-value:0.03617456	
Alternative Hypothesis:	True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 0.6361607 sd = 0.7423213

Estimation Method: -----mvue

Data: -----Fluoride

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.7151058

Test Statistic Parameter: -----n = 56

P-value:-----4.107741e-09

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	Shapiro-Wilk GOF
Hypothesized Distribution:	Lognormal
Estimated Parameter(s):	meanlog = -1.028269 sdlog = 1.072752
Estimation Method:	mvue
Data:	Fluoride
Number NA/NaN/Inf's Removed:	2
Sample Size:	56
Test Statistic:	W = 0.9064636
Test Statistic Parameter:	n = 56
P-value:	-0.0003719209
Alternative Hypothesis:	True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 6.3117857 sd = 0.4757735

Estimation Method: -----mvue

Data: -----pH

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.9590466

Test Statistic Parameter: -----n = 56

P-value:-----0.05482421

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: ------Lognormal

Estimated Parameter(s):-----meanlog = 1.83954243 sdlog = 0.07718869

Estimation Method: -----mvue

Data: -----pH

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.944486

Test Statistic Parameter: -----n = 56

P-value:-----0.01213442

Alternative Hypothesis: -----True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 793.5536 sd = 200.0573

50 200.057

Estimation Method: -----mvue

Data: -----Sulfate

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.956566

Test Statistic Parameter: -----n = 56

P-value:-----0.04217151

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	Shapiro-Wilk GOF
Hypothesized Distribution:	Lognormal
Estimated Parameter(s):	meanlog = 6.6378688 sdlog = 0.2991399
Estimation Method:	mvue
Data:	Sulfate
Number NA/NaN/Inf's Removed:	2
Sample Size:	56
Test Statistic:	W = 0.8734779
Test Statistic Parameter:	n = 56
P-value:	2.892929e-05
Alternative Hypothesis:	True cdf does not equal the Lognormal Distribution.

Results of Goodness-of-Fit Test

Test Method: -----Shapiro-Wilk GOF

Hypothesized Distribution: -----Normal

Estimated Parameter(s):-----mean = 1446.8036 sd = 324.8191

Estimation Method: -----mvue

Data: -----TDS

Number NA/NaN/Inf's Removed:-----2

Sample Size:-----56

Test Statistic:-----W = 0.9525293

Test Statistic Parameter: -----n = 56

P-value:-----0.02763066

Alternative Hypothesis: ------True cdf does not equal the Normal Distribution.

Test Method:	Shapiro-Wilk GOF
Hypothesized Distribution:	Lognormal
Estimated Parameter(s):	meanlog = 7.2478739 sdlog = 0.2556553
Estimation Method:	mvue
Data:	TDS
Number NA/NaN/Inf's Removed:	2
Sample Size:	56
Test Statistic:	W = 0.8961628
Test Statistic Parameter:	n = 56
P-value:	0.0001608449
Alternative Hypothesis:	True cdf does not equal the Lognormal Distribution.

TABLE 6 Statistsical Analysis of Ground Water Data Trend Summary - Background and Post-Background Former Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Background				
Parameter	Well ID	Constitutent Trend		
	MW-31	Stable		
	MW-32	Stable		
	MW-33	Stable		
Boron	MW-29	Increasing		
	MW-30	No Trend		
	MW-34	No Trend		
	MW-35	Probably Increasing		
	MW-31	Decreasing		
	MW-32	No Trend		
	MW-33	Stable		
Calcium	MW-29	Increasing		
	MW-30	No Trend		
	MW-34	Stable		
	MW-35	Decreasing		
	MW-31	Stable		
	MW-32	Stable		
	MW-33	Stable		
Chloride	MW-29	No Trend		
	MW-30	Decreasing		
	MW-34	No Trend		
	MW-35	No Trend		
	MW-31	Decreasing		
	MW-32	Stable		
	MW-33	Stable		
Fluoride	MW-29	Stable		
	MW-30	Stable		
	MW-34	Stable		
	MW-35	Stable		
	MW-31	No Trend		
	MW-32	Decreasing		
	MW-33	Decreasing		
pН	MW-29	Stable		
	MW-30	No Trend		
	MW-34	Stable		
	MW-35	No Trend		
	MW-31	Probably Decreasing		
	MW-32	No Trend		
	MW-33	Stable		
Sulfate	MW-29	Increasing		
	MW-30	Probably Decreasing		
	MW-34	No Trend		
	MW-35	Probably Decreasing		
	MW-31	Decreasing		
	MW-32	No Trend		
	MW-33	Stable		
TDS	MW-29	Probably Increasing		
	MW-30	Stable		
	MW-34	No Trend		
	MW-35	Probably Decreasing		

Notes:

1) The order of the wells is based upon upgradient

2) The well which are italized represent the

3) The constitutent trend is based upon the Coefficient of Variation (COV) and the Confidence Factor (CF). The methodology is based on "MAROS: A Decision

Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for Boron

Null Hypothesis:	rho = 0
Alternative Hypothesis:	True rho is not equal to 0
Test Name:	Rank von Neumann Test for
	Lag-1 Autocorrelation
	Beta Approximation)

Estimated Parameter(s):	.rho = 0.6437864
Estimation Method:	.Yule-Walker
Data:	.Boron
Sample Size:	.56
Test Statistic:	.RVN = 0.6617738

Confidence Interval:.....LCL = 0.4433705 UCL = 0.8442022

Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for Calcium

Null Hypothesis:	rho = 0	
Alternative Hypothesis:	True rho is not equal to 0	
Test Name:	Rank von Neumann Test for	
	Lag-1 Autocorrelation	
	(Beta Approximation)	

Estimated Parameter(s):	rho = 0.7514778
Estimation Method:	Yule-Walker
Data:	Calcium
Sample Size:	56
Test Statistic:	RVN = 0.5800068

Confidence Interval:..... LCL = 0.5786797 UCL = 0.9242759

TABLE 7 Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for Chloride

Null Hypothesis:....rho = 0

Alternative Hypothesis:.....True rho is not equal to 0

Test Name:Rank von Neumann Test for Lag-1 Autocorrelation (Beta Approximation)

Estimated Parameter(s):	.rho = 0.6639911
Estimation Method:	.Yule-Walker
Data:	.Chloride
Sample Size:	.56
Test Statistic:	.RVN = 0.5280759

Confidence Interval:.....LCL = 0.4681495 UCL = 0.8598327

TABLE 7 Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for pH

Null Hypothesis:....rho = 0

Alternative Hypothesis:.....True rho is not equal to 0

Test Name:.....Rank von Neumann Test for Lag-1 Autocorrelation (Beta Approximation)

Estimated Parameter(s):	.rho = 0.5390714
Estimation Method:	.Yule-Walker
Data:	.pH
Sample Size:	.56
Test Statistic:	.RVN = 0.5288107

Confidence Interval:.....LCL = 0.3184741 UCL = 0.7596688

TABLE 7 Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for Sulfate

Null Hypothesis:....rho = 0

Alternative Hypothesis:.....True rho is not equal to 0

Test Name:.....Rank von Neumann Test for Lag-1 Autocorrelation (Beta Approximation)

Estimated Parameter(s):	.rho = 0.5252193
Estimation Method:	.Yule-Walker
Data:	.Sulfate
Sample Size:	.56
Test Statistic:	.RVN = 1.016541

P-value:8.274788e-05

Confidence Interval:.....LCL = 0.3023416 UCL = 0.7480971

Statistical Analysis of Ground Water Data Von Neumann's Test – Background Monticello Steam electric Station Mt. Pleasant, Titus County, Texas

Results of Hypothesis Test for TDS

Null Hypothesis:	rho = 0
Alternative Hypothesis:	True rho is not equal to 0
Test Name:	Rank von Neumann Test for
	Lag-1 Autocorrelation
	(Beta Approximation)

.rho = 0.3566856
.Yule-Walker
.TDS
.56
.RVN = 1.353298

P-value:0.01291312

Confidence Interval:.....LCL = 0.1120017 UCL = 0.6013694

Statistical Analysis of Ground Water Data Outlier Analysis - Background Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Outlier Tests for Selected Uncensored Variables User Selected Options Date/Time of Computation From File ProUCL 5.2 12/8/2023 1:39:44 PM 60-ANOVA.xls D6-ANOVA.xls Full Precision OFF

Rosner's Outlier Test for Boron (d)

Mean Standard Deviation Number of data Number of suspected outliers		5.353 1.629 32 2				
#	Mean	sd	Potential outlier	Obs. Number	Test value	Critical value (59

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	5.353	1.603	2.09	20	2.036	2.94	3.27
2	5.459	1.541	2.12	21	2.167	2.92	3.25

For 5% Significance Level, there is no Potential Outlier For 1% Significance Level, there is no Potential Outlier

Dixon's Outlier Test for Boron (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 7.52 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.101

For 10% significance level, 7.52 is not an outlier. For 5% significance level, 7.52 is not an outlier. For 1% significance level, 7.52 is not an outlier.

2. Observation Value 1.74 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.264

For 10% significance level, 1.74 is not an outlier. For 5% significance level, 1.74 is not an outlier. For 1% significance level, 1.74 is not an outlier.

Rosner's Outlier Test for Calcium (d)

	Mean Standard Deviation Number of data Number of suspected outliers		141.5 29.78 32 2				
			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	141.5	29.31	66.2	21	2.568	2.94	3.27
2	143.9	26.86	86.6	2	2.133	2.92	3.25

For 5% Significance Level, there is no Potential Outlier For 1% Significance Level, there is no Potential Outlier

Statistical Analysis of Ground Water Data Outlier Analysis - Background Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Dixon's Outlier Test for Calcium (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 311 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.124

For 10% significance level, 311 is not an outlier. For 5% significance level, 311 is not an outlier. For 1% significance level, 311 is not an outlier.

2. Observation Value 71.7 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.098

For 10% significance level, 71.7 is not an outlier. For 5% significance level, 71.7 is not an outlier. For 1% significance level, 71.7 is not an outlier.

Rosner's Outlier Test for Chloride (d)

Mean	90.67
Standard Deviation	10.51
Number of data	32
Number of suspected outliers	2

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	90.67	10.34	122	24	3.03	2.94	3.27
2	89.65	8.96	110	32	2.271	2.92	3.25

For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 122 For 1% Significance Level, there is no Potential Outlier

Dixon's Outlier Test for Chloride (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 171 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.090

For 10% significance level, 171 is not an outlier. For 5% significance level, 171 is not an outlier. For 1% significance level, 171 is not an outlier.

2. Observation Value 47.8 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.012

For 10% significance level, 47.8 is not an outlier. For 5% significance level, 47.8 is not an outlier. For 1% significance level, 47.8 is not an outlier.

Statistical Analysis of Ground Water Data Outlier Analysis - Background Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Rosner's Outlier Test for pH (d)

Mean	6.17
Standard Deviation	0.345
Number of data	32
Number of suspected outliers	2

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	6.17	0.34	5.06	32	3.265	2.94	3.27
2	6.206	0.284	5.34	16	3.045	2.92	3.25

For 5% significance level, there are 2 Potential Outliers Potential outliers are: 5.06, 5.34 For 1% Significance Level, there is no Potential Outlier

Dixon's Outlier Test for pH (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 7.14 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.015

For 10% significance level, 7.14 is not an outlier. For 5% significance level, 7.14 is not an outlier. For 1% significance level, 7.14 is not an outlier.

2. Observation Value 4.99 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.376

For 10% significance level, 4.99 is an outlier. For 5% significance level, 4.99 is not an outlier. For 1% significance level, 4.99 is not an outlier.

Rosner's Outlier Test for Sulfate (d)

Mean	786
Standard Deviation	203.1
Number of data	32
Number of suspected outliers	2

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	786	199.9	343	21	2.216	2.94	3.27
2	800.3	189.4	378	20	2.23	2.92	3.25

For 5% Significance Level, there is no Potential Outlier For 1% Significance Level, there is no Potential Outlier

Statistical Analysis of Ground Water Data Outlier Analysis - Background Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

Dixon's Outlier Test for Sulfate (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 1210 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.306

For 10% significance level, 1210 is not an outlier. For 5% significance level, 1210 is not an outlier. For 1% significance level, 1210 is not an outlier.

2. Observation Value 292 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.485

For 10% significance level, 292 is an outlier. For 5% significance level, 292 is an outlier. For 1% significance level, 292 is not an outlier.

Rosner's Outlier Test for TDS (d)

Mean	1411
Standard Deviation	317.7
Number of data	32
Number of suspected outliers	2

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	1411	312.7	795	21	1.971	2.94	3.27
2	1431	302	817	20	2.034	2.92	3.25

For 5% Significance Level, there is no Potential Outlier For 1% Significance Level, there is no Potential Outlier

Dixon's Outlier Test for TDS (u)

Number of Observations = 24 10% critical value: 0.367 5% critical value: 0.413 1% critical value: 0.497

1. Observation Value 1970 is a Potential Outlier (Upper Tail)?

Test Statistic: 0.024

For 10% significance level, 1970 is not an outlier. For 5% significance level, 1970 is not an outlier. For 1% significance level, 1970 is not an outlier.

2. Observation Value 654 is a Potential Outlier (Lower Tail)?

Test Statistic: 0.383

For 10% significance level, 654 is an outlier. For 5% significance level, 654 is not an outlier. For 1% significance level, 654 is not an outlier.

Assumed Distribution:Normal
Estimated Parameter(s):mean = 5.334107 sd = 1.621487
Estimation Method: mvue
Data:Boron
Sample Size:
Number NA/NaN/Inf's:2
Prediction Interval Method:exact
Prediction Interval Type:upper
Confidence Level:99.897%
Minimum Number of Future Observations Interval Should Contain:1
Total Number of Future Observations:2
Prediction Interval:LPL = -Inf UPL = 8.518376

Assumed Distribution:Lognormal
Estimated Parameter(s):meanlog = 5.0661168 sdlog = 0.3780929
Estimation Method:mvue
Data:Calcium
Sample Size:56
Number NA/NaN/Inf's:2
Prediction Interval Method:exact
Prediction Interval Typeupper
Confidence Level:99.79%
Minimum Number of Future Observations Interval Should Contain:1
Total Number of Future Observations:2
Prediction Interval: LPL = 0.0000 UPL = 310.8145

Assumed Distribution:Lognormal
Estimated Parameter(s):meanlog = 4.5269185 sdlog = 0.3038545
Estimation Method:mvue
Data:Chloride
Sample Size:56
Number NA/NaN/Inf's:2
Prediction Interval Method:exact
Prediction Interval Type:upper
Confidence Level:99.96%
Minimum Number of Future Observations Interval Should Contain:1
Total Number of Future Observations:2
Prediction Interval:LPL = 0.0000 UPL = 181.5453

Results of Distribution Parameter Estimation

Assumed Distribution:Normal

Estimated Parameter(s):.....mean = 0.6245536 sd = 0.7511108

Estimation Method:.....mvue

Data:Fluoride

Sample Size:.....56

Number NA/NaN/Inf's:2

Prediction Interval Method:exact

Prediction Interval Type:.....upper

Minimum Number of Future Observations Interval Should Contain:......1

Total Number of Future Observations:2

Prediction Interval:LPL = -Inf UPL = 2.10

Assumed Distribution:Normal
Estimated Parameter(s):mean = 6.3117857 sd = 0.4757735
Estimation Method:mvue
Data:pH
Sample Size:56
Number NA/NaN/Inf's:2
Prediction Interval Method:exact
Prediction Interval Type:two-sided
Confidence Level:99.96%
Minimum Number of Future Observations Interval Should Contain:1
Total Number of Future Observations:2
Prediction Interval:LPL = 5.267424 UPL = 7.356147

Assumed Distribution:	.Normal
Estimated Parameter(s):	.mean = 793.5536 sd = 200.0573
Estimation Method:	.mvue
Data:	.Sulfate (SO4)
Sample Size:	.56
Number NA/NaN/Inf's:	.2
Prediction Interval Method:	.exact
Prediction Interval Type:	.upper
Confidence Level:	.99.91%
Minimum Number of Future Obse Interval Should Contain:	ervations .1
Total Number of Future Observations:	.2
Prediction Interval:	.LPL = -Inf UPL = 1193.133

Assumed Distribution:	Normal
Estimated Parameter(s):	mean = 1446.8036 sd = 324.8191
Estimation Method:	mvue
Data:	Total Dissolved Solids (TDS)
Sample Size:	56
Number NA/NaN/Inf's:	2
Prediction Interval Method:	exact
Prediction Interval Type:	upper
Confidence Level:	99.96%
Minimum Number of Future Obse Interval Should Contain:	ervations 1
Total Number of Future Observations:	2
Prediction Interval:	LPL = -Inf UPL = 2159.808

TABLE 10 Statistical Analysis of Ground Water Data Background Value Evaluation Monticello Steam Electric Station Mt. Pleasant, Titus, Texas

		Calculated	Higher of Reporting Limit
Parameter	Reporting Limits	Prediction Limits	and Prediction Limit
Boron (mg/L)	0.03	8.52	8.52
Calcium (mg/L)	0.3	311	311
Chloride (mg/L)	1	182	182
Fluoride (mg/L)	0.4	2.10	2.10
pH (field) (s.u.)		5.27-7.36	5.27-7.36
Sulfate (S04) (mg/L)	3	1,193	1,193
Total Dissolved Solids (TDS) (mg/L)	10	2,160	2,160

TABLE 11 Statistical Analysis of Ground Water Data Background Value Selection Monticello Steam Electric Station Mt. Pleasant, Titus County, Texas

							Minimum	Maximum	Any				Maximum of LPL/UPL		Calculated
				No. of	No. of	Pecentage	Detection	Detection	Outliers			Reporting	1-of-2 and		Confidence
Site	Area	Constituent List	Constituent	Detects	Samples	of Detects	Value	Value	Dropped?	LPL 1-of-2	UPL 1-of-2	Limit	Reporting Limit	Distribution	Level
MOSES	Ash Water Ponds	Appendix III	Boron	56	56	100.0%	1.74	8.54	FALSE		8.52	0.03	8.52	Normal	99.90%
MOSES	Ash Water Ponds	Appendix III	Calcium	56	56	100.0%	66.2	311	FALSE		311	0.3	311	Lognormal	99.79%
MOSES	Ash Water Ponds	Appendix III	Chloride	56	56	100.0%	47.8	171	FALSE		157	1	157	Normal	99.96%
MOSES	Ash Water Ponds	Appendix III	Fluoride (Appendix III)	43	56	76.8%	0.1	2.8	FALSE		2.96	0.4	2.96	Lognormal	99.90%
MOSES	Ash Water Ponds	Appendix III	pH (field)	56	56	100.0%	4.99	7.14	FALSE	5.27	7.36		5.27 - 7.36	Normal	99.96%
MOSES	Ash Water Ponds	Appendix III	Sulfate	56	56	100.0%	292	1,210	FALSE	-	1,193	3	1,193	Normal	99.91%
MOSES	Ash Water Ponds	Appendix III	Total Dissolved Solids	56	56	100.0%	657	1,970	FALSE		2,159	10	2,159	Normal	99.96%